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The White Queens Riddle

’First, the fish must be caught.’
That is easy: a baby, I think, could have caught it.

’Next, the fish must be bought.’
That is easy: a peny, I think, would have bought it.

’Now cook me the fish!’
That is easy, and will not take more than a minute.

’Let it lie in a dish!’
That is easy, because it already is in it.

’Bring it here! Let me sup!’
It is easy to set such a dish on the table.

’Take the dish-cover up!’
Ah! that is so hard that I fear I’m unable!

For it holds it like glue -
Holds the lid to the dish, while it lies in the middle:

Which is easiest to do,
Un-dish-cover the fish, or dishcover the riddle?

from: Through the Looking Glass
and what Alice found there.

Lewis Carrol, 1896
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Fundamental Constants

symbol description quantity† unit

Na Avogadro constant 6.0221415(10)× 1023 mol−1

kB Boltzmann constant 1.3806505(24)× 10−23 JK−1

e elementary charge 1.60217653(14)× 10−19 C
gr gyro magnetic ratio neutron −1.91304273(45)
m neutron mass 1.67492728(29)× 10−27 kg
µN nuclear magneton 5.05078343(43)× 10−27 JT−1

µo permeability of vacuum 4π × 10−7 NA−2

h Planck constant 6.6260693(11)× 10−34 Js
h̄ Planck constant divided by2π 1.05457168(18)× 10−34 Js

†Source: Reviews of Modern Physics77 (2005) 1-107.
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Preface

Delft University of Technology participates in a project for instrument development at the
second target station of the neutron spallation source ISIS, Rutherford Appleton Labora-
tory. This project consists of the construction of a neutronreflectometerOffSpec, optimized
for off-specular neutron scattering. Delft is responsiblefor the development and imple-
mentation of spin-echo angular labeling to determine the off-specular reflection, which
in turn yields information about in-plane inhomogeneities. This novel technique, devel-
oped in Delft, is already successfully applied in spin echo small-angle neutron scattering
(SESANS).

In contrast to conventional off-specular methods, where experiments are performed in
reciprocal space, the spin-echo method probes directly in real space (on length scales from
approximately 50 nm to 50µm). The main object of this book will be the theoretical de-
scription and interpretation of small angular neutron scattering and off-specular reflection
in real space as obtained by the spin echo technique.

ix





Chapter 1

Introduction

When general properties are assigned to functions governedby a wave equation, coherence
theory can be applied. Then, it is possible to find general formulations for the propagation
of wave functions despite their physical background might be different. Coherence theory is
widely used in optical [1] scattering phenomena but is stillfairly new in X-ray [2], [3], [4] or
neutron scattering. Textbooks briefly discuss the coherence properties of neutron beams [5]
but do not apply it to neutron scattering. Rauch and collaborators [6] are using the results
of coherence theory to explain their neutron-interferometry measurements.

Recently G̈ahler used a space-time approach to derive the neutron scattering formulas
for many body systems [7] in the kinematic approximation. Inthe following this approach
is followed and extended to the phase-object approximation[8] and neutron reflectometry.
Here, it is assumed that all wave functions arestatistically stationary(an ensemble average
is independent of the origin of time) and ergodic (an ensemble average is time-independent
and equal to a time average) [1] and only second-order coherence effects are discussed.
Further coherence theory is used to describe neutron polarization effects [9] and the way a
polarized beam is transported through an instrument. This enables a coherent approach to
these effects without the need for some ad-hoc definition on beam polarization and analysis.

Coherence theory can be interpreted as a shorthand notationfor the description of ensem-
ble averages of wave functions and their (mathematical) properties. In general coherence
theory does not give new insight in the involved physics. Worse, it complicates the classical
view of a neutron as a small magnet moving through the instrument performing Larmor
precession in magnetic flux density regions. However, it gives possibilities to apply insight
from one field of physics to another. The main advantage of coherence theory is that it gives
the possibility to calculate the results of the propagationof the wave function through the
instrument directly. No ad-hoc folding of theoretical results with instrumental resolution
is needed, but direct computation of measurable data is possible. Coherence theory seems
to be quite complicated and unnecessary to describe the neutron propagation through an
instrument. But after getting used to the concepts of the mutual coherence function and the
way this function is propagated through free-space and space with magnetic flux density it
can give a more thorough account of the important effects before and after the scattering
process.

1
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Chapter 2

Coherence theory

2.1 Definitions

Let Ψ(~r, t) denote a neutron wave function characterizing the field at point ~r at time t.
For a realistic neutron source it will be a fluctuating function of time and may be regarded
as a typical member of an ensemble consisting of all possibleneutron generating events.
It consists of a large number of Fourier components independent of each other, so that
their superposition gives rise to a fluctuating field only describable in statistical terms. For
a statistically stationary beam it can be constructed from its constituting monochromatic
waves:

Ψ(~r, t) =

∫
ψ~k(~r)e−iωktd3k, (2.1)

where~k is thewavevectoror propagation vector, ωk = vpk wherevp = h̄k/2m equals
thephase velocity1 of the wave function andm equals the neutron mass. Note thath̄ωk is
determined by the total energy of the neutron (the sum of kinetic and potential energy) and
is constant for a statistically stationary beam. The wavevector is related to the wavelength,
λ of the neutron wave byk = 2π/λ. Statistical stationarity is related to the frequency,ωk

of the neutrons wave function. Hence, processes with relevant time constants much larger
thanω−1

k can still be treated.
Knowing the wave function, the neutron density can be calculated by:

ρ(~r) = 〈Ψ∗(~r, t)Ψ(~r, t)〉t , (2.2)

where〈x(t)〉t denotes the time average ofx(t) andX∗ the complex conjugated value of the
functionX . The neutron flux (or neutron current density) is given by

~J(~r) = ℜ
{〈

Ψ∗(~r, t)
h̄

im
~∇Ψ(~r, t)

〉

t

}
, (2.3)

whereℜ{a} denotes the real part ofa.

1The phase velocity is the velocity at which aphase changeis propagated through the medium. For light this
is the speed of light, which in vacuum does not depend on the wavelength of the waves. For neutrons, the phase
velocity is inversely proportional to the wavelength and half of the velocity of a classical neutron. In a medium it
is determined by the neutron scattering properties of the constituting particles.

3



4 Chapter 2. Coherence theory

When the wave function is quasi monochromatic, for instancea Gaussian distribution
with an average wavevector ofk̄ and an effective spread of∆k :

ψ~k(~r) = ψ̂
e−(k−k̄)2/2∆k2

∆k
√

2π
ei~k·~r, (2.4)

equation (2.3) reduces to:
~J(~r) = 2~vpρ(~r), (2.5)

where~vp = ~kvp/k̄. Note that this equation holds exactly only for a beam in the direction
~vp. If the divergence of the beam becomes too large this approximation is not allowed. The
time dependence of the density and the flux disappears as onlystatistically stationary fields
are taken into account. Further it is assumed that all fields are ergodic, indicating that time
average and ensemble average yield the same results.

The neutron density itself is not sufficient to describe the field completely, since it does
not contain information on the propagation of the waves. Therefore themutual coherence
functionis introduced and defined as:

Γ(~r1, ~r2, τ) = 〈Ψ∗(~r1, t)Ψ(~r2, t+ τ)〉t . (2.6)

It represents the correlation between the field at a point~r1 and the complex conjugated
field at a point~r2 at time momentst and t + τ respectively. As the considered field is
statistically stationary the ensemble average is independent of timet and only the time
difference between two point influences the mutual coherence. Note that the density of the
wave function can be determined from the mutual coherence function as:

ρ(~r) = Γ(~r, ~r, 0). (2.7)

The mutual coherence function can be normalized resulting in thecomplex degree of cohe-
rence:

γ(~r1, ~r2, τ) =
Γ(~r1, ~r2, τ)√
ρ(~r1)ρ(~r2)

. (2.8)

It can be shown [1] that|γ(~r1, ~r2, τ)| ≤ 1 .

2.2 Coherence time and lengths

The coherence time,tc of a wave function is a measure of the time interval in which ap-
preciable amplitude and wave correlations of the wave function at a particular pointP in
a fluctuating field will persist. The mutual coherence function can be used to define the
coherence time of a wave function. A definition of the coherence time [1] can be:

tc(~r)
2 =

∫∞

−∞
τ2 |Γ(~r, ~r, τ)|2 dτ

∫∞

−∞
|Γ(~r, ~r, τ)|2 dτ

. (2.9)

For a quasi-monochromatic beam the coherence time can be related to the effective spectral
width of the wave function at pointP :

tc ≥
1

2∆kvp
, (2.10)
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where the equal sign holds for a Gaussian distribution. Thisdefinition of coherence time
is useful when the wave function is quasi-monochromatic andthe spectrum has a single
reasonable well-defined peak. In other situations other definitions can be applied [1].

In non-dispersive media2 (and statistically stationary fields) the temporal coherence can
be expressed in terms of the spatial coherenceΓ(~r, ~r′, 0) [1]:

Γ(~r, ~r, τ) =

∫
Γ(~r, ~r′, 0)G(~r − ~r′, τ)d~r′, (2.11)

whereG(~r, t) is the time-dependent Green function:

G(~r, t) =
1

(2π)2

∫
ei(~k·~r−kvpt)d~k. (2.12)

This means that under such conditions the coherence time is related to the longitudinal
coherence length,lc which is the distance traveled by the wave function during the cohe-
rence time. As the neutron phase velocity depends on the neutron wavelength this limits
the applicability of general coherence theory to quasi-monochromatic beams. For a quasi
monochromatic wave function the phase velocity can be takenconstant, so the longitudinal
coherence length is given by:

lc = vptc ≥
1

2∆k
=

λ̄2

4π∆λ
, (2.13)

whereλ̄ is the average wavelength of the wave function and∆λ the effective wavelength
spread equal to∆kλ̄2/2π.

The general coherence length,rc can be defined in a similar way as the coherence time,
but this does not lead to a finite value for the coherence length at some distance from a pure
incoherent source. In this case one can define the coherence length as:

rc(~r) =

∫∞

−∞ |r1| |Γ(~r, ~r + ~r1, 0)|2 dr1
∫∞

−∞ |Γ(~r, ~r + ~r1, 0)|2 dr1
. (2.14)

Note that the termlongitudinal applies to the direction of the propagation of the wave
function. Only if the wave function can be regarded as a beam the term becomes useful.
However, one must keep in mind the conceptual difference between the longitudinal cohe-
rence length as derived from the time dependence of the mutual coherence function and the
general coherence length as derived from the spatial dependence of the mutual coherence
function. In a directed quasi-monochromatic statistically stationary wave function the lon-
gitudinal coherence length is the same as the general coherence length taken along the beam
direction. Then the general coherence lengths in directions perpendicular to the beam are
referred to astransversalcoherence lengths.

2A non-dispersive medium, is a medium in which the phase velocity does not depend on the wavelength of the
wave function. Here, it is assumed that for quasi monochromatic neutron beams this condition is full-filled.
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P1

P2

P

6
s1

s2

ImaxImin

Figure 2.1: Visibility of interference fringes illustrated with the help of a two-beam inter-
ference experiment.

2.3 Visibility of fringes

The modulus of the complex degree of coherence can be understood as the visibility of the
fringes created by two pointsP1 andP2 as shown in figure 2.1. Scanning the screen with
pointP the intensity of the sum of the wave functions expanding frompointsP1 andP2

varies between a maximum (Imax) and minimum (Imin) value. The visibility defined by
Michelson in 1890 [10] is given by:

v =
Imax − Imin

Imax + Imin
=

2
√
ρ(~r1)ρ(~r2)

ρ(~r1) + ρ(~r2)
|γ(~r1, ~r2, τ)| . (2.15)

τ can be interpreted as the phase traveling-time difference for pathP1P (s1) andP2P (s2)
equal to(s1−s2)/vp. In the extreme case thatv = 1, the average intensity around any point
P in the fringe pattern undergoes the greatest possible variation. This representscomplete
coherence. In the other extreme casev = 0, no interference fringes are formed at all.
This is calledcomplete incoherence. The intermediate values0 < v < 1 representpartial
coherence. The phase of the complex degree of coherence determines theexact position of
the minima and maxima of the intensity while scanning withP .

The complex degree of coherence is associated with pointsP1 andP2 of the wave func-
tion. It can be interpreted as the effective retardation of the wave function asP1 with respect
to the wave function atP2. The complex degree of coherence contains an ambiguity, as also
s1−s2 influences the value. However, when the wave function is quasi-monochromatic and
τ is restricted to a small enough range of values which is usually the case, this influence can
be approximated by

γ(~r1, ~r2, τ1) ≈ γ(~r1, ~r2, τ2)e−ik̄vp(τ1−τ2) (2.16)

and
Γ(~r1, ~r2, τ1) ≈ Γ(~r1, ~r2, τ2)e

−ik̄vp(τ1−τ2), (2.17)

under the condition that
|τ1 − τ2| << tc. (2.18)
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Over aτ range satisfying this conditionγ and alsoΓ are periodic inτ with a period equal
to the mid period2π/k̄vp of the wave function.

2.4 Propagation of mutual coherence function

It can be shown [1] that the mutual coherence function is subject to the same differential
equation as the wave function itself, with respect to co-ordinates~r1 and~r2. The time-
dependent Schrödinger equation [5],

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r)Ψ(~r, t), (2.19)

whereV (~r) is the complex optical potential, can directly be used to calculate that

∇2
1Γ(~r1, ~r2, τ) = −i2m

h̄

∂Γ(~r1, ~r2, τ)

∂τ
+

2mV ∗(~r1)

h̄2 Γ(~r1, ~r2, τ), (2.20)

and

∇2
2Γ(~r1, ~r2, τ) = −i2m

h̄

∂Γ(~r1, ~r2, τ)

∂τ
+

2mV (~r2)

h̄2 Γ(~r1, ~r2, τ), (2.21)

where∇2
j is the Laplace operator taken with respect to the point~rj . Under the conditions

of a quasi-monochromatic beam as introduced in the previoussection:

Γ (~r1, ~r2, τ) = Γ(~r1, ~r2, 0)e−ik̄vpτ (2.22)

then
∂Γ(~r1, ~r2, τ)

∂τ
= −ivpk̄Γ(~r1, ~r2, τ), (2.23)

so that the wave equations reduce to:

∇2
1Γ(~r1, ~r2, τ) =

(
2mV ∗(~r1)

h̄2 − k̄2

)
Γ(~r1, ~r2, τ), (2.24)

and

∇2
2Γ(~r1, ~r2, τ) =

(
2mV (~r2)

h̄2 − k̄2

)
Γ(~r1, ~r2, τ). (2.25)

2.5 Propagation in free space

The solution of equations (2.20) and (2.21) in free space (V (~r) = 0) when the mutual
coherence function propagates into the half-spacex > 0 yields the coherence propagation
law. It can be derived by applying the Rayleigh diffraction formula of the first kind to
the wave function. The Rayleigh diffraction formula just describes the wave function in the
half-spacex > 0 given its value and derivative atx = 0. Hence, it does not really describe a
propagation. It is just a solution of the wave equation with the correct boundary conditions.
However, within certain limits, the solution of a wave equation can be understood as the
propagation of a ray [5].
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O

z

y

x

S1

S2

R1

R2

P1

P2

θ1

θ2

Figure 2.2: Notation relating to the propagation of the mutual coherence from planex = 0
into the half-spacex > 0.

Applying the definition of the mutual coherence function [1]and using the Rayleigh
diffraction formula twice, the propagation of the mutual coherence function can be de-
scribed by:

Γ(~r1, ~r2, τ) =
1

4π2

∫ ∫

x=0

cos θ1 cos θ2
R2

1R
2
2

℘Γ

(
~r′1,

~r′2, τ −
R2 −R1

vp

)
d2r′1d

2r′2, (2.26)

where℘ is the differential operator

℘ = 1 +
R2 −R1

vp

∂

∂τ
− R1R2

v2
p

∂2

∂τ2
. (2.27)

The integral is taken over points~r′1 and ~r′2 of planex = 0, ~Ri = ~ri − ~r′i andθi is the
angle between the linePiSi and thex-axis as shown in figure 2.2. Under the conditions of
a quasi-monochromatic beam:

Γ

(
~r′1,

~r′2, τ −
R2 −R1

vp

)
= Γ(~r′1,

~r′2, τ)e
ik̄(R2−R1), (2.28)

∂Γ(~r′1,
~r′2, τ)

∂τ
= −ivpk̄Γ(~r′1,

~r′2, τ) (2.29)

and
∂2Γ(~r′1,

~r′2, τ)

∂τ2
= −v2

pk̄
2Γ(~r′1,

~r′2, τ). (2.30)

If furtherRi >> 2π/k̄ then the first two terms of the differential operator can be neglected
and equation (2.26) reduces to:

Γ(~r1, ~r2, τ) =

∫ ∫

x=0

cos θ1 cos θ2e
ik̄(R2−R1)

R1R2λ̄2
Γ(~r′1,

~r′2, τ)d
2r′1d

2r′2. (2.31)
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Figure 2.3: Illustrating the notation relating to the far-zone form of the propagation law.

One should realize that the propagated mutual coherence function is calculated by two
integrals. One can be interpreted as the propagation of the incident-wave function reaching
point~r1 integrated over the source-wave function at~r′1. The other integral does the same
for the incident-wave function reaching point~r2 from ~r′2. This can be stressed by re-writing
the above integral as:

Γ(~r1, ~r2, τ) = 4k̄2

∫ ∫

x=0

cos θ1 cos θ2G0(~R1)
∗G0(~R2)Γ(~r′1,

~r′2, τ)d
2r′1d

2r′2, (2.32)

where again~Ri = ~ri − ~r′i and

G0(~r) =
eik̄r

4πr
(2.33)

is the Green function for a monochromatic free particle withwavevector̄k, describing the
propagation of a converging spherical wave in vacuum towardthe origin at~r = 0 in each
half-space (x > 0 andx < 0). The complex conjugated Green function describes the
propagation of a diverging spherical wave in vacuum from theorigin. Note that the Green
function is only applicable forr >> λ̄ (see also appendix D). The cosine factors represent
the fact that the solid angle in the field of vision of the observer of a surface area when seen
under an angle scales with the cosine of that angle.

In most cases of practical interest the pointsP1 andP2 are situated in thefar-zoneof the
source as illustrated in figure 2.3. As previously~Rj = ~rj−~r′j andcos θj = ~rj · ~ex/Rj , where

~ex is the unit vector in thex-direction. In the far-zonecos θ1 ≈ cos θ2,Rj ≈ rj −~rj · ~r′j/rj
so that:

R2 −R1 = r2 − r1 − r12, (2.34)

wherer12 = ~r2 · ~r′2/r2 − ~r1 · ~r′1/r1. AlsoRj can be replaced byrj in the cosine factor and
in the denominator of equation (2.31), giving

Γ(~r1, ~r2, τ) =
cos θ1 cos θ2e

ik̄(r2−r1)

r1r2λ̄2

∫ ∫

x=0

e−ik̄r12Γ(~r′1,
~r′2, τ)d

2r′1d
2r′2. (2.35)
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This equation enables the calculation of the propagation ofthe mutual coherence function
from neutron source to sample and from sample to detector.

2.6 Propagation from source to sample

A typical neutron source consists of unrelated neutron generating events and limiting the
case to statistically stationary phenomena the mutual coherence function at the source posi-
tion (x = 0) is given by [1]:

Γ(~r′1,
~r′2, τ) =

1

2vp

J0(~r′1)

4π
λ̄2δ(2)(~r′1 − ~r′2)e

−ik̄vpτ , (2.36)

whereJ0(~r) is the isotropic neutron source flux in neutrons per second per squared meter at
~r. δ(2)(~r) is the two-dimensional Dirac-delta function, expressing the mutually uncorrelated
source elements. The normalization factors are introducedto transform the neutron flux
to the density of the wave function. Although this is an idealization it will hold if the
correlations extends only over distances of the same order as the neutron wavelength and
the source dimensions are much larger. Substituting this inequation (2.35) yields for the
mutual coherence function

Γ(~r1, ~r2, τ) =
1

2vp

eik̄(r2−r1−vpτ) cos θ1 cos θ2
4πr1r2

∫

x=0

e−i~q12·~r′
J0(~r′)d

2r′ (2.37)

and for the complex degree of coherence

γ(~r1, ~r2, τ) = eik̄(r2−r1−vpτ)

∫
x=0

e−i~q12·~r′
J0(~r′)d

2r′
∫

x=0 J0(~r′)d2r′
, (2.38)

where~q12 = k̄
(

~r2

r2
− ~r1

r1

)
. If the source intensity is constant over some aperture the integral

overx = 0 is limited to the areaA0 of the source and the integral containing the exponential
in equation (2.38) reduces to a shape transform of the aperture:

γ(~r1, ~r2, τ) = eik̄(r2−r1−vpτ)

∫
A0
e−i~q12·~r′

d2r′

A0
. (2.39)

This equation can be used to calculate the transversal coherence length at a distanceL of
a circular homogeneous completely incoherent quasi-monochromatic source with radiusa
with it surface perpendicular to thex-axis. Then~r1 = (L, y1, z1)

T, ~r2 = (L, y2, z2)
T and

the above becomes:

γ(~r1, ~r2, τ) = eik̄(r2−r1−vpτ) 2J1(ν)
ν

, (2.40)

whereν = k̄ar/L andr =
√

(y2 − y1)2 + (z2 − z1)2 the distance between the two points.
The amplitude of this function is shown in figure 2.4. Using this result in equation (2.14)
yields:

rc =
L

k̄a

∫∞

0 u−1J1(u)2du∫∞

0 u−2J1(u)2du
, (2.41)
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|γ|

ν

Figure 2.4: Amplitude of the normalized mutual coherence function or complex degree of
coherence,|γ| as function of the normalized distance,ν (see text).

so that

rc =
L

k̄a

3π

8
≈ 1.178

L

k̄a
. (2.42)

If the source area is 1 mm2 and the distance is 4 m then the coherence length for 0.2 nm
neutrons is about 250 nm. Sometimes the transversal coherence length is defined as the
distance over which the modulus of the complex degree of coherence is reduced from its
maximum value1 for r=0 to 0.88 atr = rc. This value is reached forν = 1, hence
rc = L/k̄a. Another possibility is to use the first zero of J1 for ν = 3.83 as a measure for
the coherence length. All definitions are a bit different from each other, but clearly have the
same order of magnitude.

This example helps to understand, how it is possible to create a (partly) coherent neutron
beam from a (purely) incoherent source. The coherence length increases as the distance
from the source increases. Hence, the limited size of the source and the distance between
source and observation point creates the partly coherent beam. If the source would not be
limited (viz. a→∞) the neutrons emerging from this source never would become (partly)
coherent. Hence, the propagation of the radiation from a finite size source is a sufficient
condition to create partly coherent beams.

2.7 Propagation from sample to detector

In the detector the count rate is determined as an integral ofthe neutron flux~J(~rd) over the
detector area,Ad at a position~rd:

Id =

∫

Ad

~J(~rd) · ~nAd
d2rd, (2.43)
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where~nAd
is a unit vector perpendicular to the detector area. Using equations (2.5) and

(2.7) and assuming~vp · ~nAd
= vp this reduces to:

Id = 2vp

∫

Ad

Γ(~rd, ~rd, 0)d2rd. (2.44)

Assume that the whole sample is in the half-spacex < 0, then the mutual coherence func-
tion at x = 0 is propagated to the detector. One can use equation (2.35) tocalculate
Γ(~rd, ~rd, 0):

Γ(~rd, ~rd, 0) =
cos2 θd

r2dλ̄
2

∫ ∫

x=0

e−i~p·(~r′
2−

~r′
1)Γ(~r′1,

~r′2, 0)d2r′1d
2r′2, (2.45)

where~p = k̄~rd/rd. Here, it is assumed that the detector is in the far-zone of the sample. If
further the spatial coherence is much smaller than the sample area equation (2.45) can be
reduced to

Γ(~rd, ~rd, 0) =
cos2 θd

r2d

∫

x=0

e−i~p·~r′
F (~r′, 0)d2r′. (2.46)

where

F (~r′, τ) = λ̄−2

∫

x=0

Γ(~r′1,
~r′ + ~r′1, τ)d

2r′1. (2.47)

Note that for a homogeneous beam at the sample position this reduces to:

F (~r′, τ) = λ̄−2AsΓ(~rs0, ~r′ + ~rs0, τ), (2.48)

whereAs is the sample aperture and~rs0 the average sample position. If the detector area is
small andcos θd and~rd can be taken constant the detector count rate is:

Id(~rd) = 2vp
Ad cos2 θd

r2d

∫

x=0

e−i~p·~r′
F (~r′, 0)d2r′, (2.49)

Equation (2.49) describes the detector count rate as a two-dimensional Fourier transform
of the mutual coherence function atx = 0 integrated over theyz-plane. Otherwise if the
detector area is large and the scattering is mainly in some preferential direction so thatcos θd

can be taken constant the total count rate in the detector is given by:

Id = 2vp cos2 θd

∫

x=0

Γ(~r′1,
~r′1, 0)d2r′1, (2.50)

which can be interpreted as the count rate in a detector placed under an angleθd at the
sample position with an area equal to the cross section of thebeam.

2.8 Beam divergence

The relation between beam divergence and the mutual coherence function can be underlined
using the results of the previous section. Assume the beam iscreated from an incoherent
source. The mutual coherence at the source position is givenby equation (2.36). For the
divergence of the beam atx = rd the spread in angles is used, being defined as:

∆θ2 =
〈
θ2
〉
− 〈θ〉2 =

∫
Ad
θ2Γ(~rd, ~rd, 0)d2rd∫

Ad
Γ(~rd, ~rd, 0)d2rd

−
(∫

Ad
θΓ(~rd, ~rd, 0)d2rd∫

Ad
Γ(~rd, ~rd, 0)d2rd

)2

(2.51)
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where the beam propagates along thex-axis and the angles are assumed to be small com-
pared to 1. Note that

∫
Ad

Γ(~rd, ~rd, 0)d2rd is just the total number of neutrons per second
moving through the detector aperture,Ad. Assume that atx = 0 the mutual coherence
function is given by equation (2.40), thenΓ(~rd, ~rd, 0) is given by:

Γ(~rd, ~rd, 0) =
J0A0Adr

2
c

8vpr2dL
2λ̄2

∫ ∞

0

e−iqrrcνJ1(ν)dν, (2.52)

whereqr is the radial component of~p andrc = L/k̄a, the transversal coherence length at
x = 0 due to a incoherent source with radiusa at positionx = −L. As θ = qr/k̄ and
〈θ〉 = 0 equation (2.51) becomes:

∆θ2 =
1

k̄2r2c

∫∞

0
η2
∫∞

0
e−iηνJ1(ν)dνdη∫∞

0

∫∞

0
e−iηνJ1(ν)dνdη

(2.53)

or

∆θ =
1

k̄rc
=
a

L
. (2.54)

Hence, the beam divergence is inversely proportional to thewavevector and the coherence
length.

2.9 Propagation from source to detector

For a good understanding the propagation of the mutual coherence function from source to
detector is discussed. This is the same as from sample to detector, except now the mutual
coherence function at the sample position is that for an incoherence source according to
equation (2.36). The count rate in the detector can be determined by using equation (2.45)
(or equation (2.37) can be used with equation (2.44)) so that:

Id =

∫

Ad

cos2 θd

4πr2d
d2rd

∫

x=0

J0(~r′1)d
2r′1. (2.55)

If the detector area is small, so thatrd andcos θd can be taken constant this reduces to:

Id =
Ad cos2 θd

4πr2d

∫

x=0

J0(~r′1)d
2r′1. (2.56)

Further if the source is homogeneous and limited to an areaA0:

Id = J0A0
Ad cos2 θd

4πr2d
. (2.57)

J0A0 is the total number of neutrons emitted from the source,Ad cos2 θd/4πr
2
d is the total

fraction of source neutrons traveling through the detectorarea andθd is the angle between
detector surface and the line between source and detector.
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Chapter 3

Propagation in the sample

Propagation in free space was elaborately discussed in the previous chapter. However, the
use of wave equations for the mutual coherence function to solve the propagation through
some material has no advantage over normal solution methods. Further, one should realize
that according to quantum mechanics the wave function itself is scattered by the interaction
potential. The effect on the mutual coherence function is derived from its definition. That
is why for propagation through a sample the solutions of the Schrödinger equation for the
wave function are used. By applying the definition of the mutual coherence function these
solutions can be transformed to a form where the mutual coherence function directly after
the sample or in the detector is expressed in a sample correlation function and the mutual
coherence function just before the sample or in the source.

3.1 Scattering

The equations in the previous chapter were derived for the propagation of the mutual cohe-
rence function in free space. This does not include the scattering process. In the most
general case for elastic scattering, propagation of the wave function itself in the sample is
governed by the stationary Lippmann-Swinger equation [5]:

Ψsc(~r) = Ψin(~r)− 2m

h̄2

∫
G0(~r − ~rs)V (~rs)Ψsc(~rs)d

3rs, (3.1)

whereΨin(~r) represents the channel state or incident wave function,Ψsc(~r) the scattered
state or function,V (~rs) the scattering potential of the sample andG0(~r) is the free particle
Green function given by equation (2.33). Strictly speakingthis Green function is only valid
for a mono-chromatic beam in vacuum. Here, it is assumed thatthe wavevector spread∆k
is sufficiently small not to impart this equation. The time dependence of the wave functions
is given by:

Ψ(~r, t) = Ψ(~r)e−iωkt. (3.2)

The basis of the Lippmann-Schwinger equation is the time-dependent Schrödinger equation
applied to a time-dependent potential. The potential can befactorized in a time-dependent

15
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Ψin~k

T (~rs)

G0(~r − ~rs)
~p

Figure 3.1: Scattering geometry.

part and a space-dependent part:V (~r, t) = Vr(~r)Vt(t). By varyingVt(t) in a specific way
(0 for t→ ±∞ and1 during the scattering process), the channel state can be identified as the
solution for the Schrödinger equation before the scattering process and the scattered state
as the solution after the scattering process [11]. It can also be derived from the stationary
Schrödinger equation assuming appropriate boundary conditions (an incident plane wave
and an scattered spherical wave at the sample position).

Normally the scattered-wave function is unknown. However,the Lippmann-Schwinger
equation can be iterated resulting in an infinite series forΨsc(~r):

Ψsc(~r) = Ψin(~r)− 2m

h̄2

∫
G0(~r − ~rs1)V (~rs1)Ψin(~rs1)d

3rs1+ (3.3)

(
2m

h̄2

)2 ∫ ∫
G0(~r − ~rs1)V (~rs1)G0(~rs1 − ~rs2)V (~rs2)Ψin(~rs2)d

3rs2d
3rs1 − · · · ,

which can be rewritten in the form:

Ψsc(~r) = Ψin(~r)− 2m

h̄2

∫
G(+)(~r, ~rs)V (~rs)Ψin(~rs)d

3rs, (3.4)

whereG(+)(~r, ~rs) is a specialized (potential dependent) Green function describing the
scattering into on scattered-wave function and defined by the solution of the following
Schrödinger equation:

(
∇2 + k̄2 − 2mV (~rs)

h̄2

)
G(+)(~r, ~rs) = δ(~r − ~rs), (3.5)

where the∇2 operator represents the derivatives to~rs. This equation describes the scattered
wave as a superposition of waves produced by many scatteringevents occurring at different
elements of the sample (see figure 3.1). From this equation the propagation of the mutual
coherence function through the sample can be derived.

Introducing the scattering operator,Tk̄ equation (3.1) can also be transformed to:

Ψsc(~r) = Ψin(~r)− 2m

h̄2

∫
G0(~r − ~rs)Tk̄(~rs)Ψin(~rs)d

3rs. (3.6)
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The mutual coherence function of the scattered state can be expressed in the mutual cohe-
rence function of the channel state. This can be calculated using the definition (2.6) and the
Lippmann-Swinger equation (3.1) yielding:

Γsc(~r1, ~r2, τ) = Γin(~r1, ~r2, τ) (3.7)

−2m

h̄2

∫
G∗

0(~r1 − ~rs)Tk̄(~rs)Γin(~rs, ~r2, τ) +G0(~r2 − ~rs)T ∗
k̄ (~rs)Γ

∗
in(~rs, ~r1,−τ)d3rs

+

[
2m

h̄2

]2 ∫ ∫
G0(~r2 − ~r′s)G∗

0(~r1 − ~rs)Tk̄(~rs)T
∗
k̄ (~r′s)Γin(~rs, ~r′s, τ)d

3r′sd
3rs.

The first term of this equation can be understood as the mutualcoherence function of the
direct beam, the second term as an interference term betweenthe direct and scattered beam
and the last term the mutual coherence function of the scattered beam. However, in general
the mutual coherence function at the detector position is needed. Using equation (2.44) and
~r = ~r′s − ~rs the count rate at the detector due to the scattered beam becomes:

Id = 2vp

∫ ∫
Rout(~rs, ~rs + ~r)

[
m

4πh̄2

]2
Tk̄(~rs)T

∗
k̄ (~rs + ~r)Γin(~rs, ~rs + ~r, 0)d3rsd

3r,

(3.8)
where

Rout(~r1, ~r2) = (4π)2
∫

Ad

G∗
0(~rd − ~r2)G0(~rd − ~r1)d2rd. (3.9)

If it is assumed that the direct beam is spatial homogeneous over the sample-beam cross
section and the same holds forRout the count rate at the detector position becomes

Id = 2vp

∫
Rout(~rs0, ~rs0 + ~r)Gs(~r)Γin(~rs0, ~rs0 + ~r, 0)d3r, (3.10)

where~rs0 is the average sample position and

Gs(~r) =

[
m

2πh̄2

]2 ∫
Tk̄(~rs)T

∗
k̄ (~rs + ~r)d3rs (3.11)

is a sample correlation function comparable to the scattering length density correlation func-
tion. Note that equation (3.10) holds for any scattering angle and for any scattering operator
function. Hence, the count rate in the detector is determined by an integral over the sample
correlation function and two functions that are determinedby the instrument details. These
two functions together constitute the resolution of the instrument under consideration.

The interpretation of this equation can be understood by looking at figure 3.2.Γin rep-
resents the effect of the phase differences between path 1 and 2 on the coherence function
of the incident beam.Rout represents the same for the scattered beam. Only paths which
comes from within the coherence volume contribute to the interference at the detector posi-
tion.

In generalRout andΓin are complicated functions depending on the full instrumental
details. Under certain conditions these functions can be determined approximately. Equa-
tion (2.31) and equation (2.36) can be used to calculate the incident mutual coherence func-
tion for a completely homogeneous and incoherent source with areaA0:

Γin(~r1, ~r1 + ~r, 0) =
J0

2vp

∫

A0

ei~k·~r

4π
∣∣∣~r1 − ~r′

∣∣∣
2 d

2r′, (3.12)
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Γin
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Figure 3.2: Scattering geometry.

where~k = k̄(~r1 − ~r′)/
∣∣∣~r1 − ~r′

∣∣∣. If it is assumed that the mutual coherence function of the

incident beam,Γin is only different from 0 for small values of~r (i.e. the coherence length
of the incident beam is much smaller than the sample dimensions) the conjugated Green
function in the expression forRout can be approximated by

G0(~rd − ~r2) ≈ G0(~rd − ~r1)ei~p·~r, (3.13)

where~r = ~r2 − ~r1 and~p = k̄(~rd − ~r1)/ |~rd − ~r1| so that

Rout(~r1, ~r2) ≈
∫

Ad

e−~p·~r

|~rd − ~r1|2
d2rd. (3.14)

If the source, sample and detector dimensions are small compared to the distance between
the source and sample at the one hand and sample and detector at the other,r1 can be
replaced byrs0, the average sample position. The count rate in the detectordue to the
scattered beam becomes:

Id = J0

∫ ∫

A0

∫

Ad

e−~q·~r

4π |~rd − ~rs0|2
∣∣∣~rs0 − ~r′

∣∣∣
2 d

2rdd
2r′Gs(~r)d

3r, (3.15)

where~q = ~p − ~k is also known as the wavevector transfer. The argument of theouter
integral is proportional to the number of neutrons scattered by the coherence volumed3r
at the sample position reaching the detector. In this view the sample correlation function
is comparable to a scattering amplitude. To stress the resolution effect this equation is
rewritten as a convolution:

Id(~rd) = RFT (~q) ∗ Sk(~q), (3.16)

where

RFT (~q) = J0

∫ ∫

A0

∫

Ad

e−~q·~r

4π |~rd − ~rs0|2
∣∣∣~rs0 − ~r′

∣∣∣
2 d

2rdd
2r′d3r (3.17)
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can be interpreted as the instrumental resolution functionand

Sk(~q) =

∫
e−i~q·~rGs(~r)d

3r (3.18)

is called thesample structure factorand equals the Fourier transform of the sample corre-
lation function.

Note that this interpretation of the scattered detector count rate as a convolution of sample
structure factor and instrumental resolution is only validif the detector area and sample
dimensions are small compared to the distance between sample and detector. If this is
the case, the mutual coherence function at the sample position can be considered to be
homogeneous. It only depends on the difference between the two position vectors (see
also appendix C). If it is assumed that after scattering at the sample the scattered mutual
coherence function is also homogeneous, then the coherenceapproach to scattering yields
the same results as the stationary collision theory [11], describing the scattering of a wave
function by means of transition matrices, scattering amplitudes and differential scattering
cross sections.

3.2 Born approximation

In the kinematic or first Born approximation it is assumed that the scattered beam is only a
fraction of the incident beam. In this case the transition operatorTk̄ can be replaced by the
Fermi pseudo potential [5]:

Tk̄(~r) = V (~r) = −2πh̄2

m
ρb(~r), (3.19)

whereρb(~r) equals the scattering length density of the sample defined as

ρb(~r) =
∑

i

biδ(~r − ~ri) (3.20)

andbi is the bound scattering length of theith atom. The sample correlation functionGs(~r)
as defined in equation (3.11) becomes the three-dimensionalvan Hove contrast correlation
function,γH(~r) [12]:

Gs(~r) ≈ γH(~r) =

∫

Vs

ρb(~rs)ρb(~rs + ~r)d3rs. (3.21)

3.3 Phase-object approximation

De Haan et al. [8] showed that for small angle neutrons scattering and thin samples it is
possible to directly relate the mutual coherence function behind the sample to the one before
the sample using Feynmann path integrals [13]. An example ofsuch a scattering process is
shown in figure 3.3. In the small angle approximation the wavefunction can be calculated
by estimating the phase acquired by the neutron wave if it hadfollowed the classical path
through the sample. Hence, the wave function behind the sample becomes:

Ψsc(x1, y, z) = Ψin(x0, y, z)e
ik̄
∫ x1

x0
n(x, y, z)dx

, (3.22)
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Figure 3.3: Scattering geometry projected on a plane with constanty.

wherex is the incident beam direction,x = x0 a plane just before the sample,x = x1

a plane just behind the sample andn(x, y, z) is the local refraction index of the sample.
The integral in the exponent is known as the optical path length. As it is assumed the
scattering object only influences the phase of the neutron wave function this is called the
phase-object approximation. This approximation can also be derived using theEikonal
approximation[5], [11] and holds for|∇V (~r)| ≪

∣∣k̄V (~r)
∣∣, which is valid as long as two

conditions are fulfilled [14]. First, the difference in optical path length between the classical-
line path for straight lines through the sample with a small angle (θ) between them should be
much smaller than the neutron wavelength, hence(x1−x0)θ

2 ≪ 2λ̄ orx1−x0 ≪ 8π2/q2λ̄,
whereq = θk̄. For instance ifq ≤ 0.01 nm−1 andλ̄ ≈ 0.2 nm thenx1 − x0 ≪ 4 mm.
Second, the local refractive index does not change appreciably from one path to the other. If
these conditions are not satisfied it is possible to make a second order correction or to break
up the calculation in slices of small enough pieces [14].

The refraction index is related to the potentialV (x, y, z) given by the Fermi pseudo
potential:

n2 = 1− V (x, y, z)

h̄ωk
= 1− λ2ρb(x, y, z)

π
= 1− λ2k2

c

4π2
, (3.23)

whereh̄ωk equals the total energy of the neutron,λ its wavelength,ρb(x, y, z) the coherent
scattering length density andkc the critical wavevector defined by

√
4πρb (see also sec-

tion 6.2). Incoherent scattering, large angle coherent scattering or absorption can be taken
into account by a suitable imaginary part of the refraction index [5]. The approximation
is valid for thermal neutrons as used in SESANS (spin echo small angle neutron scatter-
ing) [15], [16], [17], [18] or USANS (ultra small angle neutron scattering) [19], [20], [21]
as the refractive index is close to unity. Note that the deviation from unity of the refractive
index is proportional to the square of the wavelength so it increases rapidly for increasing
wavelength.
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Propagation of the mutual coherence function through the sample (fromx = x0 to
x = x1) can be calculated using equation (3.22) and the definition of the mutual coherence
function (2.6):

Γsc(~r1, ~r2, τ) = Γin(~r1 − ~dx, ~r2 − ~dx, τ)e
iS(~r2 − ~dx)− iS∗(~r1 − ~dx), (3.24)

where~dx = (x1 − x0)~ex and

S(~r) = k̄

∫ dx

0

(n(~r + x~ex)− 1)dx (3.25)

is theextraphase shift acquired by the neutron wave function due to the material properties
of the sample. Note thatS can be complex due to a complex refraction index. In principle
the subtraction of 1 from the refractive index is not needed and it has no influence on the
results. However, because the refractive index only differs from 1 by a small amount, the
extra acquired phase shift is much smaller than the total phase shift acquired after traveling
through the sample. The use of the extra acquired phase shiftenables series expansion of
the equation for small values ofS.

These equations can be used together with equation (2.49) todetermine the count rate at
the detector. By realizing thatcos θd ≈ 1 for small angle neutron scattering the result is:

Id = 2vp
Ad

r2d

∫

x=x1

e−i~p·~rF (~r)d2r, (3.26)

where

F (~r) = λ̄−2

∫

x=x0

Γin(~r1, ~r + ~r1, 0)eiS(~r + ~r1)− iS∗(~r1)d2r1. (3.27)

An important feature of this equation is it describes what normally in SANS is called the
scattered neutron intensityand the direct beam. In the above formalism there is no differ-
ence any more: the direct beam is also refracted or in other words: there is no direct beam.
Another important feature is that in general the coherence function (3.24) does not have
to be a real valued function so that the scattering profile canbe different for positive and
negative wavevectors.

Assume that the incident beam has a homogeneous intensity over the sample cross sec-
tion, then equation (3.26) reduces to:

Id =
2vpAd

r2dλ̄
2

∫

x=x1

Gr(~r)e
−i~p·~rΓin(~rs0, ~r + ~rs0, 0)d2r, (3.28)

whereGr(~r) is the sample correlation function:

Gr(~r) =

∫

x=x0

eiS(~r + ~r1)− iS∗(~r1)d2r1. (3.29)

Again by using equation (3.12) equation (3.28) can be rewritten as a convolution of the
instrumental resolution and the two-dimensional Fourier transform of the sample correlation
function:

Id = RFT (~q) ∗ Sk(~q), (3.30)
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Figure 3.4: Refraction geometry projected on a plane with constanty.

where the instrumental resolution is given by

RFT (~q) =
J0Ad

r2dλ̄
2

∫

x=x1

∫

A0

e−i~q·~r 1

4π
∣∣∣~rs0 − ~r′

∣∣∣
2 d

2r′d2r (3.31)

and

Sk(~q) =

∫

x=x1

e−i~q·~rGr(~r)d
2r. (3.32)

3.4 Refraction

Refraction and diffraction occur when a neutron beam travels through a medium where the
optical potential of the medium depends on the position. In general diffraction can be seen
as an interference phenomena of coherent parts of the scattered beam. Refraction can be
understood as the interference phenomena of the coherent direct beam. However, as was
shown in the previous section the differentiation in directand scattered beam is somewhat
arbitrary. Here, refraction is defined as small angle scattering at macroscopic surfaces. An
example of refraction is shown in figure 3.4.

Let space be divided into two half-spaces with a boundary making an angle ofθin with
the incident neutron beam parallel to thex-axis. The refractive index of the left half-space
is 1 and of the rightn. Assume a neutron wave function, described by the mutual cohe-
rence function,Γin is known at a plane forx = x0, and they dependence is ignored. The
mutual coherence function at the positionx = x1 can be calculated using the results of
equations (3.24) and (3.25) from the previous section. The propagation of the mutual cohe-
rence function fromx = x1 to the detector position is given by equation (3.30). Ignoring
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resolution effects and absorption or scattering (the refractive index of the medium is real)
the count rate in the detector position is proportional toSk, which in this case is given by

Sk(~q) =

∫

x=x1

e−i~q · ~r
∫

x=x0

eiS(~r + ~r1)− iS(~r1)d2r1d
2r, (3.33)

where
S(~r + ~r1)− S(~r1) = k̄(1− n) cot θin(~r · ~ez) (3.34)

only depends on~r, so that equation (3.33) reduces to:

Sk(~q) =

∫

x=x0

∫

x=x1

ei
{
k̄(1− n) cot θin(~r · ~ez)− ~q · ~r

}
d2rd2r1, (3.35)

The inner integral of equation (3.35) is taken over the wholex = x1 plane and only gives
a non-zero result when the exponent is 0. In this case~q = k̄~rd/rd, where~rd is the detector
position. Hence:

((1 − n) cot θin~ey − ~rd/rd) · ~r = 0, (3.36)

where it was used that they-component of~rd is zero, thez-component isrd sin(θin− θout)
and thex-componentrd cos(θin − θout). θout is the refraction angle and is determined by
the direction in which the detector is seen at the sample position. Realizing that~r has no
y-component this reduces to:

(1− n) cot θin = sin(θin − θout), (3.37)

which under the condition thattan θin ≫ |1− n| is the same as:

cos θout

cos θin
= n, (3.38)

known as Snells law.
One should realize that the Phase-object approximation only holds if (x1 − x0)(θin −

θout)
2 ≪ 2λ̄. This gives an indication of the maximum length of the transition zone be-

tween the two media for equation (3.37) or (3.38) to hold:x1−x0 ≪ 2λ̄ tan2 θin/(1−n)2.
Using equation (3.23) this is equal tox1 − x0 ≪ 8 tan2 θin(2π/kc)

4/λ̄3. For silicon (kc =
0.051 nm−1), θin = 45o and an average neutron wavelength of 0.2 nm:x1−x0 ≪ 230 m !
For the region of total reflectionθin ≈ |1− n|. Thenx1 − x0 ≪ 2λ̄, which is not the case
and the above derivation is not applicable. The region where(partial) reflection is occurring
is subject of chapter 6.

3.5 Born approximation for SANS

Kinematic or first Born approximation is the neutron scattering theory for weak scattering.
In the weak scattering limit, the difference|S(~r + ~r1)− S∗(~r1)| is much smaller than 1.
The above equation (3.29) reduces to the kinematic or first Born approximation by a series
expansion. The zeroth order term represents the incident beam. The first order term is 0.
And the second order term represents the reduction of the incident beam and the scattered
intensity:

Gr(~r) = AsT +

∫

x=x0

S(~r + ~r1)S
∗(~r1)d

2r1, (3.39)
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where

T = 1− 2

As

∫

x=x0

ℑ{S(~r1)}d2r1 −
1

As

∫

x=x0

ℜ{S(~r1)
2}d2r1 , (3.40)

whereℜ{a} is the real part ofa,ℑ{a} the imaginary part ofa andAs is the beam-lightened
sample area. Note that the transmission,T is independent ofy and z as it should. By
substituting equation (3.25) the integral at the right handside of these equations can be
interpreted using the two dimensional correlation function [22]:

Gc(y, z) =
λ̄2

As

∫

As

γ2D(y1, z1)γ2D(y + y1, z + z1)dy1dz1 , (3.41)

where the projection of the scattering length density alongthe neutron beam is given by:

γ2D(y, z) =

∫ x1

x0

ρb(x, y, z)dz. (3.42)

Equation (3.39) then reduces to

Gr(~r) = As (1−Gc(0) +Gc(~r)) . (3.43)

3.6 Multiple scattering for SANS

Interestingly the phase-object approximation also describes a multiple scattering effect as
derived by Schelten and Schmatz in the first Born approximation [23]. This can be under-
stood by investigating equation (3.29), relating the sample correlation function to the extra
phase shift acquired by the neutron wave function while traversing the sample:

Gr(~r) =

∫

As

eiS(~r + ~rs)− iS∗(~rs)d2rs, (3.44)

where the integration is over the sample surface area,As. This equation is an average of
the exponential over the sample area and can be rewritten as the sample area times the
expectation value:

Gr(~r) = AsE[eiS(~r + ~rs)− iS∗(~rs)]. (3.45)

Now, if S(~rs) is real and has a Gaussian random distribution, a correlation function can be
defined as:

C(~r) =
1

As

∫

As

(S(~r + ~rs)− S0)(S(~rs)− S0)d
2rs, (3.46)

whereS0 is the first moment (or average or expectation value) ofS(~rs). This correlation
function can be expressed in the 2D-correlation function given in equation (3.41):

C(~r) = Gc(~r)− S2
0 . (3.47)

The second moment (or variance) ofS(~rs) − S0 is defined asσ2 = C(0). Then, the
expectation value ofeiS(~rs), known as thecharacteristic functionof S(~rs), is given by:

E[eiS(~rs)] = eiS0e−σ2/2. (3.48)
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Further it is assumed thatS(~r1)−S(~r2) has a Gaussian random distribution with zero mean
too and its variance only depends on~r2 − ~r1:

g(~r) =
〈
[S(~rs)− S(~rs + ~r)]

2
〉

As

, (3.49)

where the average is taken over the whole sample area. Note that g(~r) can be reduced to
g(~r) = 2(Gc(0)−Gc(~r)). Further

E[ei(S(~rs)−S(~rs+~r))] = e−g(~r)/2, (3.50)

can be reduced to:
E[ei(S(~rs)−S(~rs+~r))] = eGc(~r)−Gc(0), (3.51)

so that
Gr(~r) = Ase

Gc(~r)−Gc(0), (3.52)

the same as given by Rekveldt et al. [17]. This was also found by Muller in case of high
resolution electron microscopy [24].

3.7 Sample correlation function for a sphere

As an example scattering from a sphere is considered. For a sphereS(~r), given by equa-
tion (3.25) becomes:

S(y, z) = 2k̄(n− 1)ℜ
{√

R2 − y2 − z2
}
, (3.53)

whereR is the radius of the sphere,n the index of refraction of the homogeneous sphere
material,k̄ the average neutron wavevector in vacuum andℜ{a} denotes the real part of
a. It was used that~r = y~ey + z~ez . The sample correlation function (3.29) for a sphere
becomes:

Gr(0, δ) =

∫

As

eiS(y,z+δ)−iS∗(y,z)dydz, (3.54)

whereAs is the beam cross section assuming the beam totally envelopsthe sphere andδ is
in thez-direction. In the following the correlation in they direction is ignored. The reason
for this is that SESANS or USANS techniques only determine one correlation direction and
the other direction is averaged (see chapter 5). The so-called form factorcan be calculated
as:

F (δ) =
ℜ{Gr(δ)−Gr(∞)}
ℜ{Gr(0)−Gr(∞)} = 1− ℜ{Gr(0)−Gr(δ)}

ℜ{Gr(0)−Gr(∞)} , (3.55)

which is1 for δ = 0 and0 for δ = ∞. Only the real part is taken because in practice only
the real part is measured (see section 5.2). Note thatGr(0) = As, here equal toπR2. From
the above equation (3.54) and assuming the imaginary part ofthe index of refraction can be
neglected, it can be shown that:

ℜ{Gr(0)−Gr(δ)} =

∫

As

1− cos(S(y, z + δ)− S(y, z))dydz. (3.56)

Note that in the(y, z)-range where bothS(y, z + δ) andS(y, z) are0 the integrand is0.
Hence, the integration only has to be taken over the area where one or both are non-zero
(see the shaded area of figure 3.5). As soon asδ ≥ 2R this equation reduces to:
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Figure 3.5: Correlation geometry projected on ayz-plane for the calculation of the form
factor of a sphere.R is the radius of the sphere andδ the probed correlation length. The
variablesr1, α1 andr2, α2 are used to describe the integrals over the shaded area’s.

ℜ{Gr(0)−Gr(δ)} = Gr(0)−Gr(∞) = 2

∫

As

1− cos{S(y, z)}dydz. (3.57)

This equation can be rewritten as (see also figure 3.5) :

ℜ{Gr(0)−Gr(∞)} = 2

∫ 2π

0

∫ R

0

r1

(
1− cos

{
2(n− 1)k̄

√
R2 − r21

})
dr1dα1.

(3.58)
Solving this integral results in:

ℜ{Gr(0)−Gr(∞)} =
π

2
R2η2ζ(η), (3.59)

whereη =
∣∣2(n− 1)Rk̄

∣∣ andζ(η) = 4(2 + η2 − 2η sin η − 2 cosη)/η4. η is the phase
acquired by a neutron passing through a distance of2R through a material with refractive
indexn compared to a neutron traveling the same distance through vacuum. For neutrons
of 0.2 nm passing through aluminum or silicon the distance toacquire a phase difference of
π is about 76µm, for copper 24µm. If η ≪ 1 thenζ(η) ≈ 1−η2/18+O(η4) and ifη ≫ 1
thenζ(η) ≈ 4/η2 + O(η−3). This is shown in figure 3.6. The index of refraction is given
by equation (3.23) so thatη ≈ 2Rλ̄ρb. Hence, in the kinematic limit the above equation
reduces to:

ℜ{Gr(0)−Gr(∞)} ≈ 2πR4λ̄2ρ2
b

(
1− η2

18
+O(η4)

)
. (3.60)

Note that in the limit of very largeη the dependence on the refractive index and the neutron
wavelength vanishes:ℜ{Gr(0)−Gr(∞)} = 2πR2. As soon asδ < 2R the two sphere’s in



3.7 Sample correlation function for a sphere 27
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Figure 3.6: Normalized scattering functionζ(η), describing the change in the amplitude of
the form factor as function of the phase acquired by a neutronpassing through a sphere di-
ameter of sphere material,η (full line). The dotted line is the approximation in the kinematic
limit (small η) and the dashed line the approximation in the refraction limit (largeη).

figure 3.5 start to overlap and equation (3.56) can only be calculated numerically. However
for smallη it can be expanded into a series:

ℜ{Gr(0)−Gr(δ)} =

∫

As

(S(y, z + δ)− S(y, z))2

2
+O((S(y, z + δ)− S(y, z))4)dydz.

(3.61)
Ignoring fourth and higher order terms this reduces to:

ℜ{Gr(0)−Gr(δ)} =

∫

As

S(y, z)2dydz −
∫

As

S(y, z + δ)S(y, z)dydz. (3.62)

After substituting equation (3.53) forS(y, z) the first term at the right hand side reduces to
πR2η2/2. The second term can be converted to a solvable double integral by changing the
integration variables tor2 andα2 (see figure 3.5). This gives for the second term:

−4η2

R2

∫ π
2

0

∫ rmax

0

r2

√
r42 − 2 (2z2 cos2 α2 + 1− z2)R2r22 + (1− z2)2 R4dr2dα2,

(3.63)
wherez = δ/2R andrmax = R

√
1− z2 sin2 α2 − Rz cosα2. This can be rewritten as

−η2R2f(δ/2R) where:

f(z) = 4

∫ π
2

0

∫ √1−z2 sin2 α−z cos α

0

r

√
r4 − 2(2z2 cos2 α+ 1− z2)r2 + (1− z2)

2
drdα.

(3.64)
The inner integral can be solved by changing the integral variable tor2 and realizing that
the integration overr2 can be extended to1− z2 if the real value of the result is taken. This
yields:

f(z) =
π

2
(1−z2)−z2

∫ π
2

0

2 cos2 α
(
1− z2 + z2 cos2 α

)
ln

{
1 +

1− z2

z2 cos2 α

}
dα. (3.65)
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Figure 3.7: Real space form factor of a sphere as function of the reduced probing distance
δ/2R for several values the phase acquired by a neutron passing through a sphere diameter
of sphere material,η. Full line: η ≪ 1; long-dashed line:η = π; short-dashed line:η = 2π;
dotted line:η = 3π and dashed-dotted line:η ≫ 1.

This integral can be solved by splitting is into its terms andchanging the integral variable
to 2α or 4α. After some lengthy calculations this yields:

f(z) = π

{(
z2

4
+

1

2

)√
1− z2 −

(
1− z2

4

)
z2 ln

(
1 +
√

1− z2

z

)}
, (3.66)

so that the form factor equation (3.55) in the kinematic limit becomes:

Fkin(δ) =
2

π
f(δ/2R), (3.67)

the same as was given by Krouglov [25]. In the kinematic limitthe form factor does not
depend onη, only on the radius of the sphere. This is shown as the full line in figure 3.7.
With increasingη the form factor is decreasing shown as the dashed lines in thefigure. If
η is of the order of2π it starts to oscillate around its value forη ≫ 1, represented by the
dashed-dotted line. The oscillation is shown for two valuesof η in the figure. Hence, when
η becomes of the order ofπ or higher significant deviations occur from the kinematic limit.
For large value’s ofη it can be shown that the form factor reduces to:

Fref (δ) =
1 + 2ηzK1(2ηz)

2
− asin(z) + z

√
1− z2

π
, (3.68)

wherez = δ/2R andK1(x) is the first order Bessel function of the second kind [26]. This
equation describes the form factor quite well except for theoscillations in the tail. This
function is shown as the dashed-dotted line in figure 3.7. Note that for large radius of the
spherez will in general be much smaller than 1 and the last two terms can be ignored. In
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Figure 3.8: Real space form factor of a copper sphere as function of the probing distanceδ
for several values of its radius. Full line: 1µm; long-dashed line: 5µm; short-dashed line:
10µm; dotted line: 100µm and dashed-dotted line: 1000µm.

figure 3.8 the form factor of a homogeneous copper sphere is shown for several values of its
radius. Within the shown range the form factor is constant for large radii of the sphere. The
form factor is then determined by refraction at the sphere’ssurface only. One can use Snells
law to determine the refraction of neutrons at the surface ofthe sphere in the same way as it
was done for wires by Plomp [27]. Then the same result is found.

The phase-object approximation holds for both Born approximation and refraction. This
is due to the large correlation lengths of the objects resulting in scattering under very small
angles, down to several micro-radians.

One can related the form factor to the polarization measuredby a SESANS instrument.
SESANS measures the polarization of the neutron beam as function of the spin echo length,
lse [15] (see also chapter 5):

lse = cλ2BL cot(θ1)/2π , (3.69)

wherec = 4.6368 × 1014 T−1m−2, B the magnetic induction at the position of theπ/2-
flippers,L the distance between the magnets of one spin echo arm,θ1 the angle of the
interfaces of the precession regions to the neutron beam. The ratio of the measured polar-
ization and the empty beam polarization,P0 is proportional to the real part of the spatial
coherence function:

P (lse)

P0(lse)
=
ℜ(Gr(lse))

ℜ(Gr(0))
, (3.70)

so that the form factor is equal to the shape of the normalizedpolarization:

P (lse)

P0(lse)
− P (∞)

P0(∞)
=

(
1− P (∞)

P0(∞)

)
F (lse) . (3.71)
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The amplitude of the change in the normalized polarization is given by1− P (∞)/P0(∞)
equal toℜ{Gr(0)−Gr(∞)} /Gr(0), which for a sphere is :

1− P (∞)

P0(∞)
=

1

2
η2ζ(η) , (3.72)

which in the kinematic and refraction limit reduces to:

1− P (∞)
P0(∞) = 1

2η
2 η ≪ 1,

1− P (∞)
P0(∞) = 2 η ≫ 1.

(3.73)

Note that for the refraction limit this amplitude becomes larger than 1, effectively reversing
the polarization of the incoming beam for very large value’sof the spin echo lengthlse.
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Propagation of polarization

To calculate instrumental effects on the measured count rate in case of polarized neutrons
one should have a rigorous definition of polarization and measurement methods. For this
the concept ofcoherence matrixis introduced. Although it is not a new concept in cohe-
rence theory [1], it has not been applied to propagation of neutrons. Matrix calculations
are well known to determine the change in the polarization vector. These calculations are
more or less based on the solution of Schrödinger equationsfor the spin-expectation val-
ues. The components of the polarization vector are 3 parts ofthe 4-parts Stokes parameters.
The fourth part is the beam intensity. Together the Stokes parameters perfectly describe
a quasi-monochromatic beam at a certain position. They however fail to indicate how the
polarization or intensity of the beam is propagated. The coherence matrix facilitates this.
A further advantage of the coherence matrix over the Stokes parameters is that the relation
between non-magnetic scattering and the quantum nature of neutron scattering phenomena
is not blurred and it can be incorporated in the coherence theory.

4.1 Definitions

For particle wave functions, where interaction with magnetic and electric forces can not be
ignored, Dirac [28] was able to reduce the time-dependent Schrödinger equation using two
linear dependent solutions. The same procedure is followedto find the equation for neutron
wave functions, where in general electric and gravitational forces are ignored:

ih̄
∂

∂t

(
Ψ+(~r, t)
Ψ−(~r, t)

)
=

{
− h̄2

2m
∇2 + V (~r)− grµN σ̂ · ~B(~r, t)

}(
Ψ+(~r, t)
Ψ−(~r, t)

)
, (4.1)

whereσ̂ is the Pauli spin matrix vector (components as shown in equation (4.5)),V (~r) is the
complex nuclear optical potential,gr the gyro magnetic ratio,µN the nuclear magneton and
~B(~r, t) the magnetic flux density [5]. The linear dependent solutionsΨ+(~r, t) andΨ−(~r, t)
represent respectively theup spin stateanddown spin statepart of the wave function. The
quantitygrµNB(~r, t) is known as the Zeeman energy as it gives the energy gain or loss of
a neutron experiencing a magnetic flux density (grµN ≈ 60.3 neV/T). The Zeeman energy

31
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must be compared to the total kinetic energy of the neutron given byh̄2k̄2/2m (≈ 20.5 meV
for neutrons with a wavelength of 0.2 nm). For moderate values of the magnetic flux density
of about 1/3 T, the Zeeman energy is 6 orders of magnitude smaller than the kinetic energy.

If, as in the previous chapter, a uniform quasi-monochromatic well-collimated and sta-
tistically stationary beam is considered one can define the2× 2 coherence matrix:

Γ̂(~r1, ~r2, τ) =

〈(
Ψ+(~r2, t+ τ)
Ψ−(~r2, t+ τ)

)(
Ψ+(~r1, t)

∗ Ψ−(~r1, t)
∗
)〉

t

, (4.2)

which can be reduced to:

Γ̂(~r1, ~r2, τ) =

[
Γ++(~r1, ~r2, τ) Γ+−(~r1, ~r2, τ)

Γ+−(~r2, ~r1,−τ)∗ Γ−−(~r1, ~r2, τ)

]
, (4.3)

whereΓ++(~r1, ~r2, τ) is the mutual coherence function of theupstate of the wave function,
Γ−−(~r1, ~r2, τ) the same of thedownstate andΓ+−(~r1, ~r2, τ) thecross coherence function
of the two states. As was already noted by Mezei in 1980 [9] thepolarization of a neutron
beam can be interpreted as the degree of coherence between the wave functions representing
the two spin states of neutron. Then, thelocal polarization is defined as:

Pj(~r) =

〈(
Ψ+(~r, t)∗ Ψ−(~r, t)∗

)
σ̂j

(
Ψ+(~r, t)
Ψ−(~r, t)

)〉

t

〈Ψ+(~r, t)Ψ+(~r, t)∗〉t + 〈Ψ−(~r, t)Ψ−(~r, t)∗〉t
, (4.4)

where the indexj denotes thex, y or z component and̂σj are the Pauli spin matrices:

σ̂x =

(
0 1
1 0

)
, σ̂y =

(
0 −i
i 0

)
and σ̂z =

(
1 0
0 −1

)
. (4.5)

The polarization vector at some position~r can be described by the elements of the coherence
matrix:

~P (~r) =
1

Γ++(~r, ~r, 0) + Γ−−(~r, ~r, 0)




Γ+−(~r, ~r, 0) + Γ+−(~r, ~r, 0)∗

iΓ+−(~r, ~r, 0)− iΓ+−(~r, ~r, 0)∗

Γ++(~r, ~r, 0)− Γ−−(~r, ~r, 0)



 . (4.6)

or in short notation:

Pj(~r) =
Tr(Γ̂(~r, ~r, 0)σ̂j)

Tr(Γ̂(~r, ~r, 0))
, (4.7)

where again the indexj denotes thex, y or z component and Tr(Â) denotes the trace of
matrix Â. This can be reversed into:

Γ̂(~r, ~r, 0)

Tr(Γ̂(~r, ~r, 0))
=

1

2

(
Î + Px(~r)σ̂x + Py(~r)σ̂y + Pz(~r)σ̂z

)
. (4.8)

Note that the polarization is fully known if the coherence matrix is known, but not vise
versa.

Although for insight in the design of an instrument or experiment it can be useful to
examine changes in the polarization vector for a neutron passing along a certain path through
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the instrument, this view is not sufficient to understand allpossible effects. For instance, the
neutron flux is given by:

~J(~r) = 2~vpTr(Γ̂(~r, ~r, 0)). (4.9)

As in equation (2.3), is was assumed that the beam has the samedirection as~vp for both
up and down spin states. In general this is not the case as in principle the up and down
spin states can propagate through a magnetic flux density in different directions (see section
4.6). However in most practical cases the coherence length is too small or the spread in
directions too large to observe the beam splitting and the above approximation is valid.
This was already stressed by Mezei in [9] and [29].

4.2 Propagation of coherence matrix

If the magnetic flux density and complex optical potential isconstant in time, the wave
equations for the coherence matrix can be derived from theirdefinition (4.2) and the above
Schrödinger equation:

∇2
1Γ̂(~r1, ~r2, τ) = −Γ̂(~r1, ~r2, τ)

{
k(~r1)

2Î + κ(~r1)
2 (σ̂ · ~nB(~r1))

}
, (4.10)

∇2
2Γ̂(~r1, ~r2, τ) = −

{
k(~r2)

2Î + κ(~r2)
2 (σ̂ · ~nB(~r2))

}
Γ̂(~r1, ~r2, τ), (4.11)

wherek(~r)2 = k̄2 − 2mV (~r)/h̄2, κ(~r)2 = 2mgrµNB(~r)/h̄2 and Î is the2 × 2 identity
matrix. ~nB(~r) is a unit vector in the direction of the magnetic flux density,~B(~r). These
two equations describe the propagation of the coherence matrix and can be solved given a
certain profile for the magnetic flux density and complex optical potential.

In most cases where the magnetic flux density is generated by macroscopic objects
κ(~r) ≪ k(~r) the propagation will be determined mainly by the first term ofthe above
equations and the difference between the propagation of theelements of the coherence ma-
trix is very small. To underline the difference the reduced coherence matrix̂γB is defined
as:

Γ̂(~r1, ~r2, τ) = Γ0(~r1, ~r2, τ)γ̂B(~r1, ~r2, τ), (4.12)

whereΓ0(~r1, ~r2, τ) would have been the mutual coherence function of the wave function
when all magnetics flux densities were turned off and obeys the wave equations for the
mutual coherence function for the non-magnetic wave function:

∇2
jΓ0(~r1, ~r2, τ) = −k(~rj)2Γ0(~r1, ~r2, τ). (4.13)

Note that the polarization vector can be calculated directly from the reduced coherence
matrix. Let the vector~k(~r1) be defined as:

~∇1Γ0(~r1, ~r2, τ) = −i~k∗(~r1)Γ0(~r1, ~r2, τ). (4.14)

The complex conjugate is used because of the definition ofΓ0 (equation (2.6)). Then also,
becauseΓ0(~r1, ~r2, τ) = Γ0(~r2, ~r1,−τ)∗:

~∇2Γ0(~r1, ~r2, τ) = i~k(~r2)Γ0(~r1, ~r2, τ). (4.15)
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For a slowly varying complex optical potential
∣∣∣~∇j · ~k(~rj)

∣∣∣ ≪ |k(~r1)|2 ≈ |k(~r2)|2 it can

be shown that:

~k(~r1)
∗ · ~∇1γ̂B(~r1, ~r2, τ) = − iκ(~r1)

2

2
γ̂B(~r1, ~r2, τ) (σ̂ · ~nB(~r1)) , (4.16)

~k(~r2) · ~∇2γ̂B(~r1, ~r2, τ) =
iκ(~r2)

2

2
(σ̂ · ~nB(~r2)) γ̂B(~r1, ~r2, τ). (4.17)

Equations (4.13), (4.16) and (4.17) describe the propagation of the coherence matrix. The
mutual coherence function of the unpolarized beam, withoutinteraction with the magnetic
flux density,Γ0 propagates as discussed in chapter 2. Note that in the derivation of this
conclusion it was assumed that the Zeeman energy was much smaller than the kinetic energy
of the neutrons. This implies that the reflection of the neutrons at any transition in the
magnetic flux density is neglected. Note that the differential equations (4.16) and (4.17) are
not independent ofΓ0, because of the definition (4.14) of~k(~r). In the following section the
propagation of̂γB is discussed.

4.3 Constant magnetic flux density direction

For some region in space where thedirectionof the magnetic flux density is constant one can
always make the spin-quantization direction equal to this direction by appropriate rotation
of the reference frame [30]. Rotation of the reference framefrom thez-direction (~ez) to the
direction of the magnetic flux density,

~nB =




cosϑ sin θ
sinϑ sin θ

cos θ



 (4.18)

transforms the coherence matrix through:

Γ̂rot(~r1, ~r2, τ) = R̂~nB(~r2)Γ̂(~r1, ~r2, τ)R̂
†
~nB(~r1), (4.19)

whereR̂† represents the conjugate transpose ofR̂ andR̂~nB
= T̂y(θ)T̂z(ϑ) and

T̂y(τ) =

(
cos τ

2 sin τ
2

− sin τ
2 cos τ

2

)
and T̂z(τ) =

(
eiτ/2 0

0 e−iτ/2

)
. (4.20)

For the region of a magnetic flux density in thez- or quantization- direction the equa-
tions (4.16) and (4.17) reduce to (~nB = ~ez):

~k(~r1)
∗ · ~∇1γ̂B(~r1, ~r2, τ) = − iκ(~r1)

2

2
γ̂B(~r1, ~r2, τ)σ̂z , (4.21)

~k(~r2) · ~∇2γ̂B(~r1, ~r2, τ) =
iκ(~r2)

2

2
σ̂z γ̂B(~r1, ~r2, τ). (4.22)

For a completely coherent and homogeneous beam in vacuum~k(~r) = k̄~nk is constant and
the solution of these differential equations is given by:

γ̂B(~r1, ~r2, τ) = T̂z(φ(~r′2, ~r2))γ̂B(~r′1,
~r′2, τ)T̂z(φ(~r′1, ~r1))

†, (4.23)
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where~rj − ~r′j =
∣∣∣~rj − ~r′j

∣∣∣~nk and

φ(~r′, ~r) = k̄−1

∫ ~r

~r′

κ(~r)2dr =
2mgrµN

h̄2k̄

∫ ~r

~r′

B(~r)dr (4.24)

is a measure for the extra phase acquired by the neutron wave function due to the interaction
with the magnetic flux density and closely related toS as defined in equation (3.25).

Equation (4.23) shows that the propagation of the coherencematrix from one position
to another through a magnetic flux density with constant direction can be calculated by
means of the line integral representing the extra phase acquired by a specific neutron (up or
down spin state) when traveling from the first position to thelast position along the classical
neutron path. Combining equation (4.19) and (4.23) for a region with constant magnetic
flux density direction~nB results in:

γ̂B(~r1, ~r2, τ) = M̂(~r2, ~r′2)γ̂B(~r′1,
~r′2, τ)M̂(~r1, ~r′1)

†, (4.25)

whereM̂(~r, ~r′) = R̂−1
~nB(~r)T̂z(φ(~r′, ~r))R̂~nB(~r′). The most general form of this matrix is a

rotation matrix, Ĥ , some of which properties are discussed in appendix A. In thefollow-
ing sections these properties are exploited together with the fact that a trace of a matrix is
invariable to cyclic permutations and that the trace of a sumof matrices is the same as the
sum of the traces of these matrices.

4.4 Larmor precession

In a region of lengthL where both the direction,~n and the magnitude of the magnetic flux
density,B are constant, matrix̂M as defined in the previous section is given by:

M̂ = R̂−1
~n T̂z(cλ̄BL)R̂~n, (4.26)

wherec = −4πmgrµN/h
2 = 4.63209× 1014 T−1m−2. This equation can be rewritten as:

M̂ = Î cos
γLBtL

2
− i (nxσ̂x + nyσ̂y + nzσ̂z) sin

γLBtL
2

, (4.27)

wheretL = 2L/vp is the travel time of a neutron with wavelength,λ̄ through the region
of magnetic flux density,γL = −2grµN/h̄ = 1.832472× 108 T−1s−1 andγLB is known
as theLarmor frequency, independent of the wavelength of the neutrons. As shown in ap-
pendix A this matrix can be interpreted as a rotation of the polarization vector ofγLBtL
radians around the direction of the magnetic flux density. This is why this type of propaga-
tion of the coherence matrix is know asLarmor precession.
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Figure 4.1: Sequence in space of magnetic flux densities representing a space dependent
magnetic flux density~B(~r).

4.5 General magnetic flux density

If between~r and~r′ the direction of the magnetic flux density changes too much (see fig-
ure 4.1) the region between~r′ and~r can be divided intoN regions where the direction does
not change appreciable. The matrix̂M(~r, ~r′) in equation (4.25) must be replaced by

D̂(~r, ~r′) =
N∏

i=1

M̂i(~ri+1, ~ri), (4.28)

where~r1 = ~r′, ~rN+1 = ~r, ~ri indicates the border between regioni andi+ 1 and the matrix
M̂i(~ri+1, ~ri) describes the propagation of the reduced coherence matrix in regioni. Matrix
D̂ is called a device matrix as it describes the influence of the neutron manipulation device
on the propagation of the coherence matrix. Note that as in this caseD̂ is a product of
rotation (or streaming) matrices only, it can also be represented by a rotation matrix.

For a constant magnetic flux density and optical potential the propagation of the cohe-
rence matrix can also be derived in the way shown by Mandel [1]to obtain equation (2.26).
The procedure applies twice Rayleigh’s first diffraction formula and uses the definition of
the mutual coherence function. Rayleigh’s first diffraction formula describes the propaga-
tion of a wave function from a plane. Here one must take into account that the wavevector
of the up and down neutron wave function is different, due to the magnetic interaction. This
yields for the propagation of the coherence matrix whenRi ≫ λ:

Γ̂(~r1, ~r2, τ) =

∫ ∫

x=0

cos θ1 cos θ2
4π2R1R2

T̂k(R2)Γ̂
(
~r′1,

~r′2, τ
)
T̂k(R1)

†d2r′1d
2r′2, (4.29)

where

T̂k(R) =

(
k+eik+R 0

0 k−eik−R

)
(4.30)
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andk± = (k̄2±κ2)1/2. k+ represents the (average) wavevector of the up spin wave (parallel
to the magnetic flux density) andk− the same for the down spin wave. Becauseκ≪ k̄ it is
possible to expandk± ask̄ ± δκ, whereδκ = κ2/2k̄ and use the approximation:

T̂k(R) ≈ k̄eik̄RT̂z(δκR). (4.31)

Then the above equation reduces to:

Γ̂(~r1, ~r2, τ) = (4.32)

∫ ∫

x=0

cos θ1 cos θ2e
ik̄(R2−R1)

R1R2λ̄2
T̂z(δκR2)Γ̂

(
~r′1,

~r′2, τ
)
T̂z(δκR1)

†d2r′1d
2r′2.

If the transversal coherence length (see section 2.2) of theneutron beam,rc ≪ δκ−1 and
the far-zone of the field is considered (see section 2.5) the matrices just before and after the
coherence matrix inside the integral do not depend on~r′1 and~r′2 and can be put outside the
integral. The integral then gets the same form as the propagation integral equation (2.35) of
the mutual coherence function. It can be repeated over subsequent regions in space where
a (different strength) magnetic flux density exists, so thatthe arguments of the matrices
before and after the integral are converted into a sum over all regions which is equal to the
line integral as defined in equation (4.24). Hence, the aboveequation can be rewritten using
the definition of the reduced coherence matrix into:

γ̂B(~r1, ~r2, τ) =

T̂z(φ(~r′2, ~r2)

∫ ∫
x=0 e

−ik̄r12Γ0(~r′1,
~r′2, τ)γ̂B(~r′1,

~r′2, τ)d
2r′1d

2r′2∫ ∫
x=0

e−ik̄~r12Γ0(~r′1,
~r′2, τ)d

2r′1d
2r′2

T̂z(φ(~r′1, ~r1)
†, (4.33)

wherer12 = ~r2 · ~r′2/r2 − ~r1 · ~r′1/r1. If γ̂B(~r′1, ~r′2, τ) on thex = 0 plane does not depend
on ~r′1 or ~r′2 it reduces to:

γ̂B(~r1, ~r2, τ) = T̂z(φ(~r′2, ~r2)γ̂B(~r′1, ~r′2, τ)T̂z(φ(~r′1, ~r1)
†, (4.34)

the same as equation (4.23).
One can extend the above reasoning to the general case where the magnetic flux density

variesslowly in space. Slowly means that the changes in the magnetic flux density are on
a scale much larger thanδκ−1. In this situation the matrices before and after the cohe-
rence matrix in equation (4.32) are converted into matricesaccording to equation (4.28) and
equation (4.32) changes to:

Γ̂(~r1, ~r2, τ) = (4.35)
∫ ∫

x=0

cos θ1 cos θ2e
ik̄(R2−R1)

R1R2λ̄2
D̂(~r2, ~r′2)Γ̂

(
~r′1,

~r′2, τ
)
D̂(~r1, ~r′1)

†d2r′1d
2r′2,

reducing in the far-zone limit to:
Γ̂(~r1, ~r2, τ) = (4.36)

cos θ1 cos θ2e
ik̄(r2−r1)

r1r2λ̄2

∫ ∫

x=0

e−ik̄r12D̂(~r2, ~r′2)Γ̂
(
~r′1,

~r′2, τ
)
D̂(~r1, ~r′1)

†d2r′1d
2r′2.

It is also possible to calculate the device matrixD̂ if the magnetic flux density changes in
a specific way. This was done by Schwink and Schärpf [31] for helical magnetic structures.
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Figure 4.2: Polarized beam splitting by a region of constantmagnetic flux density.

They found that in these cases the up and down spin states propagateboth with the two
wavevectors~k+ and~k−. The propagation reduced to a propagation with one wavevector if
the quantization axis is continuously rotated and taken along the direction of the magnetic
flux density.

4.6 Beam splitting

In case the direction of the magnetic flux density in some region is parallel to a fixed-axis the
propagation of the coherence matrix can be calculated according to the previous section. If
a neutron beam propagates along thex-axis and the boundary of the magnetic flux density is
not perpendicular to the propagation direction, so-calledbeam splitting is observed as shown
in figure 4.2. The propagation of the coherence matrix is given by equation (4.32). The
propagation of the two diagonal elements of this matrix are comparable to the propagation
of the mutual coherence function as given in section 3.4. Therefraction index is now given
by n± = 1 ± δκ/k̄, where+ denotes the up-spin wave and− the down-spin wave. The
refraction angle (see figure 4.2)α = δκ/k̄ cot θ. For a magnetic flux density of 1/3 T,
θ = 45o and a neutron wavelength of 0.2 nmα ≈ 0.5 µrad. The down-spin wave is
refracted at the boundary with an angle exactly opposite to the one of the up-spin wave. The
off-diagonal elements of the coherence matrix propagate inthe same way, but have an extra
phase shift ofδκ(R2 + R1). If R2 + R1 ≫ δκ−1 the value of the integral reduces very
fast to 0. To observe beam splitting it is needed that equation (4.32) can not be reduced to
equation (4.34). This is the case when the transversal coherence length is of the same order
or larger thanδκ−1 as shown in the previous section. If the transversal coherence length
is much smaller thanδκ−1 the splitting of the beam can be neglected and equation (4.34)
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can be used to calculate the propagation of the coherence matrix. Note that the transversal
coherence length is also a measure of the divergence of the beam (see section 2.8). The
larger the coherence length the smaller the beam divergence. Hence the minimum coherence
length required to observe beam splitting can be translatedinto the maximum allowed beam
divergence to observe beam splitting. Clearly the beam divergence should be less or of the
same order asα.

4.7 Polarization analysis

A typical layout of a neutron polarization manipulating instrument is shown in figure 4.3.
The source can be a reactor or pulsed-source, producing unpolarized neutrons. The polarizer
and analyser are devices which preferentially transmit onespin state over the other. The
polarizer creates a polarized beam and the analyser is used to analyze the polarization of the
beam at the exit of the instrument. Here, it is assumed that the device matrix of a polarizer
can be characterized by two functions: the polarizing powerPP and the transmissionTP :

D̂P (~r′, ~r) =

√
TP (~r′, ~r)

2





√
1 + PP (~r′, ~r) 0

0

√
1− PP (~r′, ~r)



 , (4.37)

and the same for the analyser with subscriptP replaced byA. Note that the matrix in this
equation isnot a rotation matrix except ifPP (~r′, ~r) = 0.

For a directed quasi-monochromatic beam the neutron flux at the detector position is
given by:

~J(~rd) = 2~vpTr(Γ̂(~rd, ~rd, 0)), (4.38)

which with equations (4.12) and (4.36) can be reduced to (cos θ1 ≈ cos θ2 ≈ 1):

~J(~rd) =
2~vp

r2dλ̄
2
× (4.39)

∫ ∫

x=0

e−i~p·(~r′
2−

~r′
1)Γ0(~r′1,

~r′2, 0)Tr
(
M̂(~rd, ~r′2)γ̂B(~r′1,

~r′2, 0)M̂(~rd, ~r′1)
†
)
d2r′1d

2r′2.

Figure 4.3: Scheme of neutron polarization manipulation instrument.
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where~p = k̄~rd/rd andM̂ is the matrix describing the whole instrument:

M̂(~rd, ~r′) = D̂A(~rd, ~r′)D̂(~rd, ~r′)D̂P (~rd, ~r′), (4.40)

and D̂ the overall matrix of the neutron manipulation devices between the analyser and
polarizer. Remember that the matrix̂M(~r1, ~r0) can be calculated as a product of matrices
corresponding to regions with a constant magnetic flux density encountered by the neutron
traveling in a straight line form~r0 to ~r1. Further, if the neutron source is unpolarized:
γ̂B(~r′1, ~r′2, 0) = Î/2 yielding:

~J(~rd) =
~vp

r2dλ̄
2

∫ ∫

x=0

e−i~p·(~r′
2−

~r′
1)Γ0(~r′1,

~r′2, 0)Tr
(
M̂(~rd, ~r′2)M̂(~rd, ~r′1)

†
)
d2r′1d

2r′2.

(4.41)
The neutron flux at the detector position can be calculated from the elements of matrix̂M
describing the spin-manipulations in the instrument. The matrix describing the action of the
analyser on the neutron spin,̂DA(~rd, ~r′) will in general only depend slightly on~r′. Over
ranges within the coherence length it will be constant. Hence

D̂A(~rd, ~r′2)D̂A(~rd, ~r′1)
† ≈ D̂A(~rd, ~r′1)D̂A(~rd, ~r′1)

† = TA(~r′1, ~rd)
Î + PA(~rd, ~r′1)σ̂z

2
(4.42)

and the same holds for the polarizer. Now equation (4.41) this can be rewritten as:

~J(~rd) =
2~vp

r2dλ̄
2
× (4.43)

∫ ∫

x=0

e−i~p·(~r′
2−

~r′
1)Γ0(~r′1,

~r′2, 0)TA(~r′1, ~rd)TP (~r′1, ~rd)Ω(~rd, ~r′1,
~r′2)d

2r′1d
2r′2,

where

Ω(~rd, ~r′1,
~r′2) = Tr

(
Î + PA(~rd, ~r′1)σ̂z

2
D̂(~rd, ~r′2)

Î + PP (~rd, ~r′1)σ̂z

2
D̂(~rd, ~r′1)

†

)
. (4.44)

One can insert flippers just before the analyser and directlyafter the polarizer. The manip-
ulation of a flipper on the polarization can be represented bya rotation matrixF̂ (~rd, ~r′) for
which holdsF̂ (~rd, ~r′)F̂ (~rd, ~r′)

† = 1. Such a matrix will in general only depend slightly on
~r′. Over ranges within the coherence length it will be constantandF̂ (~rd, ~r′2)F̂ (~rd, ~r′1)

† = 1.
The matriceŝD transform to:

D̂f (~rd, ~r′) = F̂A(~rd, ~r′)D̂(~rd, ~r′)F̂P (~rd, ~r′) (4.45)

and

Ωf (~rd, ~r′1,
~r′2) = Tr(

Î + PA(~rd, ~r′1)F̂A(~rd, ~r′1)
†σ̂zF̂A(~rd, ~r′1)

2
D̂(~rd, ~r′2)×

Î + PP (~rd, ~r′1)F̂P (~rd, ~r′1)σ̂zF̂P (~rd, ~r′1)
†

2
D̂(~rd, ~r′1)

†). (4.46)
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This enables the definition of the4-shim neutron flux~J (4)
s (~rd), 4-flip neutron flux~J (4)

f (~rd)

and4-measured polarizationP (4)
m (~rd):

J (4)
s (~rd) =

∣∣∣ ~Jnn(~rd) + ~Jnf (~rd) + ~Jfn(~rd) + ~Jff (~rd)
∣∣∣

4
, (4.47)

J
(4)
f (~rd) =

∣∣∣ ~Jnn(~rd)− ~Jnf (~rd)− ~Jfn(~rd) + ~Jff (~rd)
∣∣∣

4
(4.48)

and

P (4)
m (~rd) =

J
(4)
f (~rd)

J
(4)
s (~rd)

, (4.49)

where the indexesf andn indicate when the flipper ison or off. For perfect flippers
F̂Aσ̂zF̂

†
A = −σ̂z and the same for̂FP so thatJ (4)

s (~rd) is given by equation (4.43) with
Ω replaced by

Ω(4)
s (~rd, ~r′1,

~r′2) =
1

4
Tr
(
D̂(~rd, ~r′2)D̂(~rd, ~r′1)

†
)
, (4.50)

independent of the polarizer or analyser properties. Underthe same conditionsJ (4)
f (~rd)

becomes:
J

(4)
f (~rd) = (4.51)

∫ ∫

x=0

e−i~p·(~r′
2−

~r′
1)Γ0(~r′1,

~r′2, 0)TA(~rd, ~r′1)TP (~rd, ~r′1)Ω
(4)
m (~rd, ~r′1,

~r′2)d
2r′1d

2r′2,

where

Ω(4)
m (~rd, ~r′1,

~r′2) =
1

4
PA(~rd, ~r′1)PP (~rd, ~r′1)Tr

(
σ̂zD̂(~rd, ~r′2)σ̂zD̂(~rd, ~r′1)

†
)
. (4.52)

Sometimes instead of using 4 quantities the shim and polarization are determined by 2
quantities. The2-shim neutron flux, 2-flip neutron fluxand2-measured polarizationare
defined as:

J (2)
s (~rd) =

∣∣∣ ~Jn(~rd) + ~Jf (~rd)
∣∣∣

2
, (4.53)

J
(2)
f (~rd) =

∣∣∣ ~Jn(~rd)− ~Jf (~rd)
∣∣∣

2
(4.54)

and

P (2)
m (~rd) =

J
(2)
f (~rd)

J
(2)
s (~rd)

, (4.55)

where the indexesf or n indicates when a flipper ison or off. The flipper can be either the
one just before the analyser or the one after the polarizer. It the flipper at the analyser is
used and assumed perfect~J (2)

s (~rd) is given by equation (4.43) withΩ replaced by

Ω(2)
s (~rd, ~r′1,

~r′2) =
1

2
Tr

(
D̂(~rd, ~r′1)

†D̂(~rd, ~r′2)
Î + PP (~rd, ~r′1)σ̂z

2

)
. (4.56)
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Under the same conditionsJ (2)
f (~rd) is given by equation (4.51) withΩ(4)

m (~rd, ~r′1,
~r′2) re-

placed by:

Ω(2)
m (~rd, ~r′1,

~r′2) =
PA(~rd, ~r′1)

2
Tr

(
D̂(~rd, ~r′1)

†σ̂zD̂(~rd, ~r′2)
Î + PP (~rd, ~r′1)σ̂z

2

)
. (4.57)

Equations when the flipper is at the polarizer side can be derived in a similar manner.
Note that in general the different definitions of shim neutron flux and measured po-

larization give different results. In a special case however they are the same. If ma-
trix D̂ only slightly depends on~r′, then within the coherence length it will be constant:
D̂(~rd, ~r′2) ≈ D̂(~rd, ~r′1). If alsoD̂(~rd, ~r′) can be represented by a rotation matrix:

1√
2





√
1 + PD(~rd, ~r′)e

iαD(~rd, ~r′) i

√
1− PD(~rd, ~r′)e

iβD(~rd, ~r′)

i

√
1− PD(~rd, ~r′)e

−iβD(~rd, ~r′)
√

1 + PD(~rd, ~r′)e
−iαD(~rd, ~r′)



 , (4.58)

thenΩ
(4)
s (~rd, ~r′1,

~r′2) = Ω
(2)
s (~rd, ~r′1,

~r′2) = 1
2 and the shim neutron flux is independent of all

neutron manipulation devices. AlsoΩ(4)
m andΩ

(2)
m are reduced to:

Ω(4)
m (~rd, ~r′1,

~r′2) = Ω(2)
m (~rd, ~r′1,

~r′2) =
1

2
PA(~rd, ~r′1)PP (~rd, ~r′1)PD(~rd, ~r′1), (4.59)

describing the loss of polarization due to the neutron manipulating devices. In this case
beam splitting is ignored and the polarization and neutron flux of the beam between analyser
and polarizer are completely independent. Then, the influence of the magnetic flux density
can also be described by means of its influence on the wave function, represented by two
plane waves (up and down spins state) directed along the classical neutron path through
the instrument. In the semi-classical approximation this comes down to determining the
precession of the neutron spin along its travel through the instrument [30].

4.8 Scattering

The propagation of the coherence matrix through the sample can be determined by coupling
the scattered coherence matrix to the incident coherence matrix. In general one can state
that:

Γ̂sc(~r1, ~r2, τ) = M̂sc(~r2)Γ̂in(~r1, ~r2, τ)M̂sc(~r1)
†, (4.60)

whereM̂sc is called thescattering matrix. Following the reasoning of section 4.2 one can
split the scattering matrix in a non-magnetic part and a magnetic part. Using the phase-
object approximation (section 3.3) one can write:

M̂sc(~r) = eiS(~r)Ĥm(~r), (4.61)

whereĤm is a rotation matrix describing the magnetic part of the scattering matrix. In case
of only non-magnetic scattering this is just the unit matrix. In case where the magnetic flux
density in the sample is everywhere in the direction of the quantization axis this is just a
matrix T̂z. Then the argument of this matrix is the extra phase difference between the up
and down spin state acquired by the wave after traveling through the sample.
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Equations (4.7) and (4.8) can be used to relate the polarization directly before and after
the sample:

Tr(Γ̂sc(~r, ~r, 0)) = eiS(~r)−iS∗(~r)Tr(Γ̂in(~r, ~r, 0)) (4.62)

and 


Px,sc(~r)
Py,sc(~r)
Pz,sc(~r)



 = D̂




Px,in(~r)
Py,in(~r)
Pz,in(~r)



 , (4.63)

whereD̂ is called thedepolarizationmatrix and given by its elements:

Djk =
1

2
Tr(Ĥm(~r)σ̂kĤm(~r)†σ̂j). (4.64)

If the scattering matrix is presented as:

Ĥm = Î cos θ + i (nxσ̂x + nyσ̂y + nzσ̂z) sin θ, (4.65)

the depolarization matrix becomes:

D̂ =




1 0 0
0 1 0
0 0 1



+ (4.66)

−2 sin2 θ




n2

y + n2
z −nxny −nxnz

−nynx n2
x + n2

z −nynz

−nznx −nzny n2
x + n2

y



+ 2 sin θ cos θ




0 −nz ny

nz 0 −nx

−ny nx 0



 .
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Chapter 5

Spin echo small angle neutron
scattering

5.1 Introduction

A neutron spin echo instrument consists of two regions wherethe neutron spin precesses
depending on some property of the neutron and its path through these regions. For con-
ventional spin echo the important property that is coded is the neutron wavelength enabling
inelastic measurements with a high time resolution. It is also possible to code the angle of
the path a neutron has taken through the precession regions.The total precession is propor-
tional to the difference in angles of the path through the first region and the second region.
This is called Spin Echo Small Angle Neutron Scattering orSESANS. Detailed information
can be found in for example [15] or [16].

The basis for this technique was first discussed by Mezei in 1972 [32] and Pynn in
1978 [33]. Keller [34] showed in 1995 it could be used for small angle neutrons scatter-
ing and Rekveldt [15] was first to consider the mathematical background of the technique
in 1996 and introduced the SESANS correlation function as will be discussed later.

An example of the coding part of a SESANS instrument is shown in figure 5.1. Regions
I and II are parallelogram shaped regions with approximately the same lengthsL1 and
L2. The dependence in thez direction is ignored. In region I the magnetic flux density

θI

θ1 θ2

~B1
~B2

θII θse

L1 L2
xz

y

SampleRegion I Region II

Figure 5.1: Principle of SESANS precession coding.
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Figure 5.2: Principle of complete SESANS instrument.

(B1) is constant and parallel to thez-axis. In region II the magnetic flux density (B2) is
approximately the same except in the opposite direction. Outside these regions the magnetic
flux density is supposed to be 0. The inclination angle between region I and thex-axis isθ1
and for Region II,θ2. After interaction with the sample the angle the neutron path makes
with region II is changed byθse. The influences on the propagation of the coherence matrix
in regions I and II are given by equation (4.23) where terms ofsecond and larger order inθI

andθII are ignored:
φI(~r′, ~r) = −cλ̄B1L1(1− θI tan θ1) (5.1)

and
φII(~r′, ~r) = cλ̄B2L2(1 − θII tan θ2), (5.2)

wherec = 4.63209×1014 T−1m−2 as defined in section 4.4. Hence, the device matrices for
the regions I and II are given bŷTz(φI(~r′, ~r)) andT̂z(φII(~r′, ~r)). If the sample scatters non-
magnetic,θ1 = θ2 andB1L1 = B2L2 the device matrix for the combination of region I, the
sample and region II is just̂Tz(~lse · ~qse), where~qse is the wavevector transfer at the sample
position, the direction of~lse is the coding direction (here~ey) andlse = cλ̄2B1L1 tan θ1/2π
is called thespin echo length.

For a complete SESANS instrument the coding section is part of the whole instrument
(see also figure 4.3). This is shown schematically in figure 5.2. The neutrons from the
source are transmitted through the polarizer and the rotator rotates the polarization vector to
they-axis. This corresponds to a device matrix which consist of arotation matrix,R̂(~r′, ~r).
Then the neutron propagates through regions I and II and a second rotator which reverses the
previous rotation, so its device matrix is the inverse (or hermitian adjunct) of the previous
one,R̂(~r′, ~r)†. Then the neutrons move through a flipper and analyser to enable polarization
analysis. Now, the device matrix between polarizer and flipper is given by:

Ê(~r, ~r′) = R̂(~r′, ~r)†T̂z(φII(~r′, ~r))M̂sc(~r, ~r′)T̂z(φI(~r′, ~r))R̂(~r′, ~r). (5.3)

Note that without a scattering sample this matrix reduces tothe identity matrix. If the
scattering is non-magnetic this matrix reduces to:

Ê(~r, ~r′) = eiS(~r)R̂(~r′, ~r)†T̂z(~lse · ~qse)R̂(~r′, ~r). (5.4)

The polarizing factor of̂E(~r, ~r′) is:

PE(~r, ~r′) = (1− P 2
R(~r′, ~r)) cos

{
~lse · ~qse

}
+ P 2

R(~r′, ~r), (5.5)
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Source

z

y

x

~s0

~s1

~R1

~R2

~rs

~r′′

~r′

Sample

Figure 5.3: Illustrating the notation relating to the source far-zone showing the definition of
the used symbols.

wherePR is the polarizing factor of̂R(~r′, ~r). For a perfect spin echo instrument the factor
before the cosine must be maximal and the other term minimal,hencePR = 0.

5.2 Non-magnetic scattering

Assume the neutron beam is homogeneous and unpolarized before the polarizer and can be
represented by a coherence matrix:

Γ̂0

(
~r′′1 ,

~r′′2 , τ
)

= Γ0

(
0, ~r′′, τ

)
Î/2, (5.6)

whereΓ0

(
0, ~r′′, τ

)
is the mutual coherence function at the source position. Then the dif-

ference in distance between 2 points in the source plane and two points at the sample plane
is:

R2 −R1 ≈
( ~r′′ − ~r′) · (~s0 − ~s1)

rs
, (5.7)

where~s0 is the component in the(y, z) plane at the source position of the first point at the
source,~s0 + ~r′′ the same of the second point at the source,~s1 is the component in the(y, z)
plane at the sample position of the first point at the sample and ~s1 + ~r′ the same for the
second point at the sample andrs the distance along thex-axis between source and sample

(see figure 5.3). The approximation holds as long ask̄
∣∣∣ ~r′′ − ~r′

∣∣∣
2

≪ rs.

Using equation (4.35) in the far-zone limit andcos θ1 ≈ cos θ2 ≈ 1 the coherence matrix
at the sample position becomes:

Γ̂in(~s1, ~s1 + ~r′, τ) =
1

2r2s

∫

A0

Rin(~q0 − ~q1, ~r′, τ)ŴP (~r′1,
~r′′1 )ŴP (~r′1,

~r′′1 )†d2s0, (5.8)
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Sample

z

y

x

~s1

~sd

~R2

~R1

~rd

~r′

Detector

Figure 5.4: Illustrating the notation relating to the sample far-zone showing the definition
of the used symbols.

where

Rin(~q, ~r′, τ) =
e−i~q·~r′

λ̄2

∫

A0

ei~q· ~r′′
Γ0

(
0, ~r′′, τ

)
d2r′′ (5.9)

and~q0 = k̄ ~s0/rs, ~q1 = k̄~s1/rs andŴP (~r1, ~r2) = M̂P (~r1, ~r2)D̂P (~r1, ~r2). For a complete
incoherent source (see section 2.6):

Rin(~q, ~r′, τ) =
J0e

−ik̄vpτe−i~q·~r′

8vpπ
. (5.10)

The difference in distance between 2 points in the sample plane and one point at the detector
plane is:

R2 −R1 ≈
~r′ · (~s1 − ~sd)

rd
, (5.11)

where~sd is the component in the(y, z) plane at the detector position of the point at the
detector andrd the distance along thex-axis between sample and detector (see figure 5.4).

The approximation holds as long ask̄
∣∣∣~r′
∣∣∣
2

≪ rd.

Using equation (4.35) in the far-zone limit andcos θ1 ≈ cos θ2 ≈ 1 the coherence matrix
at the detector position becomes:

Γ̂d(~rd, ~rd, τ) =
1

r2dλ̄
2
× (5.12)

∫

As

∫

As

e
i( rs

rd
~q1−~qd)·~r′

ŴA(~rd, ~r′1)Γ̂sc

(
~s1, ~s1 + ~r′, τ

)
ŴA(~rd, ~r′1)

†d2s1d
2r′,

whereΓ̂sc

(
~s1, ~s1 + ~r′, τ

)
is the coherence matrix just after scattering and~qd = k̄~sd/rd.
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For non-magnetic scattering the scattering matrix (see equation (4.61)) reduces to the
identity matrix and the scattered coherence matrix is:

Γ̂sc(~s1, ~s1 + ~r′, τ) = eiS(~s1+~r′)−iS∗(~s1)Γ̂in

(
~s1, ~s1 + ~r′, τ

)
(5.13)

The same as in section 2.7, the detector count rate is determined as an integral of the neutron
flux over the detector area. Using equation (4.9) this reduces to:

Id = 2vp

∫

Ad

Tr(Γ̂(~rd, ~rd, 0))d2rd, (5.14)

The neutron count rate in the detector according to this equation becomes, after changing
the integration order:

Id =
vp

r2sr
2
dλ̄

2
× (5.15)

∫

A0

∫

As

∫

As

e
i rs

rd
~q1·~r′

eiS(~s1+~r′)−iS∗(~s1)Rin(~q0 − ~q1, ~r′, 0)X(~r′, ~r′1,
~r′′1 )d2r′d2s1d

2s0,

where

X(~r′, ~r′1,
~r′′1 ) =

∫

Ad

e−i~qd·~r′
Ωd(~rd, ~r′1,

~r′′1 )d2rd (5.16)

and
Ωd(~rd, ~r′1,

~r′′1 ) = TA(~rd, ~r′1)TP (~r′1,
~r′′1 )× (5.17)

Tr

(
Î + PA(~rd, ~r′1)σz

2
Ê(~rd, ~r′1,

~r′′1 )
Î + PP (~r′1,

~r′′1 )σz

2
Ê(~rd, ~r′1,

~r′′1 )†

)

andÊ(~rd, ~r′1,
~r′′1 ) = M̂A(~rd, ~r′1)M̂P (~r′1,

~r′′1 ). In the following the transmission of the anal-
yser and polarizer is assumed to be constant. The shim count rate can be calculated by
takingΩd = 1

2TATP so thatX can be replaced by:

Xs(~r′, ~r′1,
~r′′1 ) =

TATP

2

r2d
k̄2

∫

Ad

e−i~qd·~r′
d2qd (5.18)

where the integral ofsd overAd is replaced by an integral of~qd. Now, if the detector
area is large enough the integral overAd is just a two-dimensional Dirac-delta function
4π2δ(2)(~r′). This reduces the shim count rate to:

Is =
vp

r2s

TATP

2

∫

A0

∫

As

eiS(~s1)−iS∗(~s1)Rin(~q0 − ~q1, 0, 0)d2s1d
2s0, (5.19)

which for a complete incoherent source can be reduced to:

Is =
TATP

4

J0A0

4πr2s
Gr(0), (5.20)

where

Gr(0) =

∫

As

eiS(~s1)−iS∗( ~s1)d2s1, (5.21)
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is the sample correlation function for~r = 0 as defined in equation (3.29). If also the
polarizing powers of analyser and polarizer are constant and the matrixÊ only depends on
the angle of the paths before and after the sample, the flip count rate can be calculated by
takingΩd equal to

Ωf (~qse) =
1

2
TATPPAPPPE(~qse), (5.22)

wherePE(~qse) is the polarizing factor of the instrument between the flippers as given by

equation (5.5), for a perfect spin echo instrumentPE(~qse) = cos
{
~lse · ~qse

}
and~qse =

~qd + ~q0 − ~q1(rs/rd + 1). Now the flip count rate can be found by replacingX by:

Xf (~r′, ~r′1,
~r′′1 ) =

TATPPAPP r
2
d

2k̄2
ℜ
{
ei~lse·(~q0−~q1(rs/rd+1))

∫

Ad

e−i~qd·(~r′−~lse)d2qd

}
,

(5.23)
where the integral ofsd overAd is replaced by an integral of~qd. Now again, if the detector
area is large enough the integral overAd is just a two-dimensional Dirac-delta function
4π2δ(2)(~r′ −~lse). This reduces the flip count rate to:

If =
vp

r2s

TATPPAPP

2
× (5.24)

ℜ
{∫

A0

∫

As

eiS(~s1+~lse)−iS∗(~s1)Rin(~q0 − ~q1,~lse, 0)ei~lse·(~q0−~q1)d2s1d
2s0

}
,

the same as

If =
vp

r2s

TATPPAPP

2
ℜ
{∫

A0

∫

As

eiS(~s1+~lse)−iS∗(~s1)Rin(~q0 − ~q1, 0, 0)d2s1d
2s0

}
.

(5.25)
Assume a complete incoherent source, then this can be reduced further to:

If = PAPP
TATP

4

J0A0

4πr2s
ℜ
{
Gr(~lse)

}
. (5.26)

The measured polarization becomes:

Pm = PAPP

ℜ
{
Gr(~lse)

}

Gr(0)
, (5.27)

so that the measured polarization is proportional to the real part of the SESANS correlation
function. The correlation is measured in the coding direction~lse.

One should realize that the above equation only holds for scattering in the phase-object
approximation. A further limitation is that it holds for anidealspin echo instrument, where
the polarizing powers and transmissions of the polarizer and analyser are constant and the
polarizing factor of the instrument between the polarizer and analyser is proportional to
cos{~lse · ~qse}. If this is not the case one can try to solve equation (5.15) differently or by
means of numerical calculations.
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5.3 Magnetic scattering

Recently Grigoriev et al. [35], [36] have shown the possibility of spin echo small angle neu-
tron scattering measurements formagneticsamples. For magnetic scattering the scattering
matrix should be incorporated. Here, it is assumed that the source is completely incoherent
and the polarizing powers and transmissions of polarizer and analyser are constant. Further
the rotation matrices before and after the precession regions I and II are ideal and given by:

R̂ =
1√
2

(
eiα ieiβ

ie−iβ e−iα

)
, (5.28)

so thatR̂σzR̂
† = Tz(2α + 2β)σy . The detector count rate can be calculated according to

equation (5.15) whereΩd is replaced by:

Ωd(~rd, ~r′1,
~r′, ~r′′1 ) =

TATP

4
Tr(Ĥm(~s1 + ~r′)Ĥm(~s1)

†)+ (5.29)

TATPPA

4
Tr(σ̂y T̂z(φ2)Ĥm(~s1 + ~r′)Ĥm(~s1)

†T̂z(φ2)
†)+

TATPPP

4
Tr(σ̂y T̂z(φ1)

†Ĥm(~s1)
†Ĥm(~s1 + ~r′)T̂z(φ1))+

TATPPPPA

4
Tr(T̂z(−2φ2)σ̂yĤm(~s1 + ~r′)T̂z(2φ1)σ̂yĤm(~s1)

†),

whereφ2 = φII −α−β andφ1 = φI +α+β. Note that the second and third term contain
eitherφ1 or φ2. As φ1 andφ2 vary fast with the position and angle, these terms will not
contribute to the detector count rate. The integrals in equation (5.15) of these terms yield 0.
This also collapses the difference between the2-shim neutron fluxand4-shim neutron flux
and the same for the flip neutron fluxes and measured polarizations. If the values ofφ1 or
φ2 are large enough the shim count rate is represented by the first term and the flip count
rate by the fourth term. Filling in equation (5.15) for the shim count rate and assuming the
detector area is large enough, gives:

Is =
vp

r2s

TATP

2

∫

A0

∫

As

eiS(~s1)−iS∗(~s1)Rin(~q0 − ~q1, 0, 0)d2s1d
2s0, (5.30)

not dependent on the magnetic scattering, the same result asfor a non-magnetic sample. To
calculate the flip count rate remember that any rotation matrix can be written as a matrix
sum of a matrix representing a rotation along thez-axis and a flipping matrix. In this
case spin dependent reflection and absorption phenomena areignored as follows from the
phase-object approximation. If these phenomena are to be taken into account the following
derivation should be adjusted. For now, the scattering matrix Ĥm can be written as a sum
of T̂z andF̂z :

Ĥm =

√
1 + Pm

2
T̂z(2γm) +

√
1− Pm

2
F̂z(2δm) (5.31)

so that
Tr(T̂z(−2φ2)σ̂yĤm(~s1 + ~r′)T̂z(2φ1)σ̂yĤm(~s1)

†) = (5.32)
√

1 + Pm(~s1 + ~r′)
√

1 + Pm(~s1) cos(φ1 + φ2 + γm(~s1 + ~r′) + γm(~s1))−
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√
1− Pm(~s1 + ~r′)

√
1− Pm(~s1) cos(φ2 − φ1 + δm(~s1) + δm(~s1 + ~r′)),

The second term of equation (5.32) depends on the differenceφ2 − φ1, which according to
equations (5.1) and (5.2) also varies fast with angle and position. This term also averages to
zero. Hence, again by filling in equation (5.15) the flip countrate is given by:

If =
vp

r2sr
2
dλ̄

2
× (5.33)

∫

A0

∫

As

∫

As

e
i rs

rd
~q1·~r′

eiS(~s1+~r′)−iS∗(~s1)Rin(~q0 − ~q1, ~r′, 0)Xf(~r′, ~r′1,
~r′′1 )d2r′d2s1d

2s0,

where

Xf (~r′, ~r′1,
~r′′1 ) =

TATPPAPP

4

√
1 + Pm(~s1 + ~r′)

√
1 + Pm(~s1)× (5.34)

∫

Ad

cos(φI + φII + γm(~s1 + ~r′) + γm(~s1))e
−i~qd·~r′

d2rd,

which after filling inφI +φII = ~lse · ~qse, ~qse = ~qd + ~q0− ~q1(rs/rd + 1) and if the detector
area is large enough can be replaced by:

Xf (~r′, ~r′1,
~r′′1 ) =

TATPPAPP

4

4π2r2d
k̄2

√
1 + Pm(~s1 + ~r′)

√
1 + Pm(~s1)× (5.35)

ℜ
{
ei~lse·(~q0−~q1(rs/rd+1))+iγm(~s1+~r′)+iγm(~s1)δ(2)(~r′ −~lse)

}
,

giving for the flip count rate for a completely incoherent source:

If = PAPP
TATP

4

J0A0

4πr2s
ℜ
{∫

As

e2iγm(~s1)Hr(~s1 +~lse)Hr(~s1)
∗d2s1

}
, (5.36)

where

Hr(~r) =

√
1 + Pm(~r)

2
eiS(~r)+iγm(~r). (5.37)

The measured polarization is determined by thez-rotation part,T̂z of the scattering matrix.
The flip partF̂z is completely depolarized. If a flipper (represented by a flipping matrix
F̂z(2τ)) is inserted between region I and the sample, the scatteringmatrix is replaced by
Ĥf = ĤmF̂z(2τ) which can be accounted for by replacement of the following variables:

Pf,p(~r) = −Pm(~r), (5.38)

γf,p(~r) = δm(~r)− τ − π, (5.39)

δf,p(~r) = γm(~r) + τ. (5.40)

This means that by flipping the neutron spin just before the sample the correlation function
that is measured changes from theT̂z part of the scattering matrix to thêFz part. The same
holds for a flipper between the sample and region II:

Pf,a(~r) = −Pm(~r), (5.41)

γf,a(~r) = −δm(~r) + τ + π, (5.42)

δf,a(~r) = −γm(~r) + τ. (5.43)
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5.4 Magnetic scattering in domains

For a sample consisting of domains of some size and shape the scattering matrix must be
calculated using the procedure shown in figure 4.1 of section4.5, where now each region
represents a single domain. Using equation (4.28) and the definition of the anglesθi andϑi

according to equation (4.18):

Ĥm(~r) =

N∏

j=1

T̂z(ϑj)
†T̂y(θj)

†T̂z(φj)T̂y(θj)T̂z(ϑj), (5.44)

where
φj = −cB′(~rj + xj~ex)λ̄(xj+1 − xj), (5.45)

c = −4πmgrµN/h
2, the same as before andB′(~rj) is thepseudomagnetic flux density[5]

in domainj:

B′(~r) = − ρm(~r)h2

2πgrµNm
=

2ρm(~r)

c
, (5.46)

whereρm(~r) is themagnetic scattering length densityso that:

φj = −2λ̄ρm(~rj + xj~ex)(xj+1 − xj), (5.47)

Equation (5.44) can be reduced to:

Ĥm(~r) =

N∏

j=1

{
Î cos(φj/2) + i

sin(φj/2)

B′(xj)

(
B′

x(xj)σ̂x +B′
y(xj)σ̂y +B′

z(xj)σ̂z

)}
,

(5.48)
where the dependence ofB′ on~rj + xj~ex is written asB′(xj).

Using the fact that(nxσ̂x + nyσ̂y + nzσ̂z)
2

= Î, this can be rewritten as:

Ĥm(~r) =

N∏

j=1

ei cλ̄
2 (xj+1−xj)(B′

x(xj)σ̂x+B′
y(xj)σ̂y+B′

z(xj)σ̂z), (5.49)

which can be approximated whenφj ≪ 1 or ~nj ≈ ~nj+1 by:

Ĥm(~r) = ei(ζx(~r)σ̂x+ζy(~r)σ̂y+ζz(~r)σ̂z), (5.50)

whereζk is a measure for the average pseudomagnetic flux density in thek-direction along
the neutron beam:

ζk(~r) =
cλ̄

2

N∑

j=1

B′
k(~r + xj~ex)(xj+1 − xj) =

cλ̄dx

2
〈B′

k(~r)〉 , (5.51)

wherek represents the indexesx, y or z. Equation (5.50) can be expanded to:

Ĥm(~r) = Î cos ζ(~r) + i (ζx(~r)σ̂x + ζy(~r)σ̂y + ζz(~r)σ̂z)
sin ζ(~r)

ζ(~r)
, (5.52)

whereζ(~r) =
√
ζx(~r)2 + ζy(~r)2 + ζz(~r)2. Note that any rotation matrix can be put in this

form. The exact interpretation ofζx, ζy andζz depends on the properties of the sample and
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the validity of the above or other approximations. The relation betweenζx, ζy, ζz andPm,
γm, δm using the notation of equation (5.31) is:

eiγm =
ζ cos ζ + iζz sin ζ√
ζ2 cos2 ζ + ζ2

z sin2 ζ
(5.53)

eiδm =
ζx − iζy√
ζ2
x + ζ2

y

(5.54)

Pm = 1− 2(ζ2
y + ζ2

x)
sin2 ζ

ζ2
. (5.55)

Now equation (5.36) becomes:

If = PAPP
TATP

4

J0A0

4πr2s
ℜ
{∫

As

Pr(~s1)Hr(~s1 +~lse)Hr(~s1)
∗d2s1

}
, (5.56)

where

Pr(~r) =
(ζ(~r) cos ζ(~r) + iζz(~r) sin ζ(~r))2

ζ(~r)2 cos2 ζ(~r) + ζz(~r)2 sin2 ζ(~r)
, (5.57)

and

Hr(~r) =

(
cos ζ(~r) + iζz(~r)

sin ζ(~r)

ζ(~r)

)
eiS(~r). (5.58)

Note thatPr does not depend on the spin echo length. If a flipper is inserted (τ = nπ)
between region I and the sample the flip count rate can be foundby using equations (5.38)-
(5.40):

If,f = PAPP
TATP

4

J0A0

4πr2s
ℜ
{∫

As

Pr,f (~s1)Hr,f (~s1 +~lse)Hr(~s1)
∗d2s1

}
, (5.59)

where

Pr,f (~r) =
(ζx(~r)− iζy(~r))2

ζx(~r)2 + ζy(~r)2
, (5.60)

and

Hr,f(~r) = (ζx(~r)− iζy(~r))
sin ζ(~s1)

ζ(~s1)
eiS(~r). (5.61)

For spin echo lengths whereHr(~s1 + ~lse) ≈ Hr(~s1) and the same forHr,f this equation
can be reduced further. If also the nuclear scattering is neglected the measured polarizations
are given by:

Pm

PAPP
=

〈
cos2 ζ(~s1)− ζz(~s1)2

sin2 ζ(~s1)

ζ(~s1)2

〉

As

, (5.62)

Pm,f

PAPP
=

〈
(ζx(~s1)

2 − ζy(~s1)
2)

sin2 ζ(~s1)

ζ(~s1)2

〉

As

. (5.63)

One should realize however that as soon as the value ofφI or φII reduces to almost
0 (hence for small spin echo lengths) the above approximation (ignoring the terms which
containφ1 − φ2, is not valid any more. An example of such a measurement is theso-called
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neutron depolarization technique[37]. In this case the flip count rate should be evaluated
different from the one represented before. The term containing φ2 − φ1 in equation (5.32)
should also be taken into account so that the 4-flip count ratebecomes:

If = PAPP
TATP

4

J0A0

4πr2s
× (5.64)

∫

As

eiS(~s1)−iS∗(~s1)

(
1 + Pm(~s1)

2
cos(2γm(~s1))−

1− Pm(~s1)

2
cos(2δm(~s1))

)
d2s1.

From this equation the 4-measured polarization can be evaluated using the results of the
previous section (equation (5.53)-(5.55)) and neglectingthe nuclear scattering:

Pm

PAPP
=

〈
1− 2(ζx(~s1)

2 + ζz(~s1)
2)

sin2 ζ(~s1)

ζ(~s1)2

〉

As

, (5.65)

different from the one derived in the previous section. Thiscorresponds to thezz-element of
the depolarization matrix as found in section 4.8. In this case, introducing an extraπ-flipper
between region I and the sample just reverses the sign of the measured polarization.
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Chapter 6

Reflectometry

In this chapter a derivation is given of the measured count rate in the detector of a reflec-
tometer. Firstly, the propagation of the mutual coherence function through the reflectometer
is discussed. The properties of the incident mutual coherence function at the sample sur-
face are determined from the geometry of the reflectometer. Secondly, it will be shown
that the detector count rate can be calculated from the scattered mutual coherence function
at the sample position. Finally, for specific cases a method is described coupling the scat-
tered mutual coherence function to the incident mutual coherence function, coupling the
measurements to the sample properties.

6.1 Geometry

For reflectometers a typical instrument geometry is shown infigure 6.1. A neutron wave
function created by a source atx = x0, represented by a mutual coherence function,Γ0

propagates through space toward the sample position atx = xs. At the sample the mu-
tual coherence functionΓin interacts with a sample. After the interaction the mutual cohe-
rence function is transformed intoΓsc. This scattered mutual coherence function propagates
through space until it reaches the detector atx = xd. In the following sections examples
of properties of a reflectometer are given. In these instances the parameters as shown in
table 6.1 are used.

6.1.1 Propagation from source to sample

The mutual coherence function between pointsP1 andP2 on the sample surface can be
found by assumingRi >> 2π/k̄, whereRi is the distance between the source point

Si at location~r′i and sample surface pointPi at location~ri. Hence,Ri =
∣∣∣~ri − ~r′i

∣∣∣ =
√
r′i

2 + r2i − 2(~r′i · ~ri)2. It must be realized that the vectors~r1 and~r2 are vectors in the

xz-plane and the vectors~r′1 and ~r′2 are vectors in theyz-plane, so that the vector product
only contains thez-components.̄k is the average wavevector of the quasi-monochromatic

57
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Figure 6.1: Notation relating to the propagation of the mutual coherence function through a
reflectometer.

symbol description quantity unit
H Height diaphragm above sample surface 4 cm
Wy Width diaphragm iny-direction 1 mm
Wz Width diaphragm inz-direction 10 cm
r1 Distance between diaphragm and sample 4 m
Hd Height detector diaphragm above sample surface4 cm
Dy Width detector diaphragm iny-direction 1 mm
Dz Width detector diaphragm inz-direction 10 cm
rds Distance between sample and detector 1 m
λ̄ Wavelength used in calculations 0.2 nm

Table 6.1: Parameters for calculation of examples of properties of a reflectometer.
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beam. Applying equation (2.31) yields:

Γin(~r1, ~r2, τ) =

∫ ∫

x=x0

cos θ1 cos θ2e
ik̄(R2−R1)

R1R2λ̄2
Γ0(~r′1,

~r′2, τ)d
2r′1d

2r′2. (6.1)

For a completely homogeneous incoherent source with areaA0 (see section 2.6) the mutual
coherence function at the sample surface reduces to:

Γin(~r1, ~r2, τ) =
J0

2vp

e−ik̄vpτ

4π

∫

A0

cos θ1 cos θ2e
ik̄(R2−R1)

R2R1
d2r′1, (6.2)

whereJ0 is the isotropic neutron source flux in neutrons per second per squared meter. For
reflectometry in the far-zonecos θi ≈ 1. If ~r2 = ~r1 + ~r, ~r = (∆x,∆y,∆z)T andr ≪ r1
thanR2 −R1 can be approximated by:

R2 −R1 ≈ −∆x

(
1− (y − y1)2 + (z − z1)2

2r21

)
−∆y

y − y1
r1

−∆z
z − z1
r1

, (6.3)

wherez1 = ~r1 · ~ez andy1 = ~r1 · ~ey. The denominator in the integral of equation (6.2) can
be reduced tor21 without introducing a large error. If the source aperture isrectangular with
a heightWy and a widthWz and the middle of the aperture is situated aty = H andz = 0
the integral can be evaluated as:

Γin(~r1, ~r1 + ~r, τ) ≈ J0

2vp

e−ik̄(∆x+vpτ)

4πr21
× (6.4)

∫ H+
Wy

2 −y1

H−
Wy

2 −y1

ei π
2 (κ2

xy2+2κyy)dy

∫ Wz
2 −z1

−Wz
2 −z1

ei π
2 (κ2

xz2+2κzz)dz,

whereκ2
x = k̄ ∆x

πr2
1
, κy = k̄∆y

πr1
andκz = k̄∆z

πr1
. This integral can be reduced further to:

Γin(~r1, ~r1 + ~r, τ) ≈ J0

2vp

eik̄(∆x−vpτ)

4πr21
× (6.5)

ei π
2 (κy/κx)2E(κx(κy/κ

2
x +H − y1 +Wy/2))− E(κx(κy/κ

2
x +H − y1 −Wy/2))

κx
×

ei π
2 (κz/κx)2 E(κx(κz/κ

2
x − z1 +Wz/2))− E(κx(κz/κ

2
x − z1 −Wz/2))

κx
,

with
E(x) = C (x) + iS (x) , (6.6)

whereC(x) andS(x) are the cosine and sine Fresnel integrals [26].
Note thatlimx→∞E(x) = (1 + i)/2 − i exp(−iπx2/2)/πx+ O(x−3). This limit can

be used to find the mutual coherence function for|∆x| ≪ ∆y2k̄,∆z2k̄:

Γin(~r1, ~r1 + ~r, τ) ≈ J0

2vp

WyWze
ik̄(∆x−vpτ)

4πr21

sin(π
2κyWy)

π
2κyWy

sin(π
2κzWz)

π
2κzWz

. (6.7)
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|γ| |γ|(A)

∆x / µm

(B)

∆z / nm

Figure 6.2: (A) Amplitude of the normalized mutual coherence function or complex degree
of coherenceγ alongx-axis at the sample surface forz1 = 0 (full line), z1 = 1 cm (long-
dashed line) andz1 = 2.5 cm (short-dashed line). (B) Amplitude of complex degree of
coherenceγ along thez-axis at the sample surface forz1 = 0 (black line). The parameters
used are given in table 6.1.

Note that forlimx→0E(x) = x(1 + O(x4)) − ix3(π/6 + O(x4)). This limit can be used
to find the neutron density at the sample surface:

Γin(~r, ~r, 0) =
J0

2vp

WzWy

4πr21
. (6.8)

Examples of the amplitude of the normalized mutual coherence function or complex degree
of coherence,γ are shown in figure 6.2. Figure 6.2A shows the function along thex-
direction (∆z = 0) at the sample surfacey1 = 0 and∆y = 0. Figure 6.2B shows the
same along thez-direction (∆x = 0). The parameters used in the calculations are given
in table 6.1. Note the difference in scale for thex- and z-direction. This is due to the
difference in diaphragm width and due to the small glancing anglesθi

1. In figure 6.2A the
mutual coherence function forz1 = 1 cm andz1 = 2.5 cm are also shown. The width of the
mutual coherence function reduces when the distance to the center of the sample changes.
This can be explained as due to an increase in the (effective)width of the diaphragm in
thez-direction. A two-dimensional plot of the mutual coherencefunction along the sample
surface is shown in figure 6.3. Note the difference in scales in the x- and z-direction.
Interesting fact is that the mutual coherence function has an extended tail in the direction
∆z ≈ ∆x(Wz +4z1)/4r1. This shows that if the coherence properties of the beam are split
in two separate contributions for thex- andz-direction the coherence of the beam might be

1The coherence length in thex-direction holds for a quasi-monochromatic beam. Sometimes it is argued that
for a real beam with a finite wavelength spread one should alsotake into account the longitudinal or time coherence
(section 2.2). For a relative wavelength spread of 0.01 thisis of the order of several nanometer. From off-specular
neutron reflectometry measurements it is known that structures can be determined which have dimensions of
severalhundredsof nanometers. This indicates scattering is not determinedby interactions of the mutual coherence
function but by the interactions of the neutron wave function with the (time-averaged) scattering potential.
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Figure 6.3: Amplitude of normalize mutual coherence function or complex degree of cohe-
rence at the center of the sample. The parameters used are given in table 6.1.

under or over estimated.

6.1.2 Propagation from sample to detector

The count rate in the detector is due to the scattered mutual coherence function propagated
from the sample position to the detector (see section 2.5 and2.7). Here equation (2.31) can
be used to calculate the propagation to the detector:

Γ(~rd, ~rd, 0) =

∫ ∫

y=0

cosφ1 cosφ2e
ik̄(R2−R1)

R1R2λ̄2
Γsc(~r1, ~r2, 0)d2r2d

2r1, (6.9)

whereRi = |~rd − ~ri|. Now for the integration area the sample plane must be taken (y = 0)
andcosφi = yd/Ri, where(xd, yd, zd)

T = ~rd. If, again,~r2 = ~r1 + ~r, ~r = (∆x, 0,∆z)T

andr≪ R1 this can be reduced to:

Γ(~rd, ~rd, 0) =

∫

y=0

cos2 φ1

R2
1λ̄

2

∫

y=0

e−i~p·~rΓsc(~r1, ~r1 + ~r, 0)d2rd2r1, (6.10)

where~p = k̄(~rd−~r1)/R1. The inner-integral of this formula can be interpreted as a Fourier
transform of the mutual coherence function at position~r1 on the sample plane. The outer-
integral is an average of that Fourier transform over the whole sample. In the far-zone
approximation the anglesφi are almostπ/2 radians (see figure 6.1) andRi in the cosine
factors and the denominator inside the integral can be takenconstant:Ri ≈ rds Hence, the
above equation becomes:

Γ(~rd, ~rd, 0) =
y2

d

r4dsλ̄
2

∫ ∫

y=0

e−i~p·~rΓsc(~r1, ~r1 + ~r, 0)d2rd2r1. (6.11)
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If the detector is located at the sample’s horizon (i.e.yd = 0) the neutron density due to the
scattered beam becomes 0. The explanation is that the samplearea as seen by a detector at
this position is zero. If the detector area is large and the scattering is in the specular direction
so thatyd/rds can be taken equal toy1/r1, the total count rate in the detector is given by
(comparable to equation (2.50)):

Id = 2vp

∫

x=0

y2
1

r21
Γsc(~r1, ~r1, 0)d2r1. (6.12)

If the scattered mutual coherence function is sufficiently narrow~p · ~r can be approximated
by:

~p · ~r ≈ k̄∆x− k̄∆xy
2
d + (zd − z1)2
2(xd − x1)2

− k̄∆z zd − z1
xd − x1

. (6.13)

If further, the second and third term can be neglected (≪ 1), the above integral equa-
tion (6.11) reduces to equation (2.46). The maximum value ofthe second or third term
is given by the maximum ofk∆x or k∆z and the maximum of eitheryd/(xd − x1) or
(zd−z1)/(xd−x1). The position of the detector should be approximately in theposition of
the reflected beam. This limits the maximum values ofyd/(xd−x1) and(zd−z1)/(xd−x1).
The maxima for∆x and∆z are determined by the spatial resolution of the reflectometer
under consideration. If for the maximum of∆x the first maximum in figure 6.2A is taken
and for∆z the first 0 of equation (6.7) is taken, the maximum of the second and third term is
of the order of 1. Hence, if the sample correlations extend over much smaller distances than
the resolution of the reflectometer as determined by the entrance slit and the sample size,
one can safely apply equation (2.46). However, for sample correlations extending toward
and over the resolution of the reflectometer the above integral equation should be used to
calculate the detector count rate.

6.2 Specular reflection

For smooth interfaces a method is described coupling the scattered mutual coherence func-
tion to the incident mutual coherence function. The procedure is the same as in chapter 3.
The scattered-wave function is coupled to the incident-wave function and then the definition
of the mutual coherence function is applied.

6.2.1 Scattering

If the scattering potentialV (~r) of the sample is statistically stationary and only a func-
tion of the direction perpendicular to the sample surface (here they-direction) the three-
dimensional time-dependent Schrödinger equation can be reduced to a one-dimensional
time independent equation. The procedure is to suppose the wave function can be factor-
ized:

Ψ(~r, t) = e−iωkt

∫ ∫
ψkx

(x)ψkz
(z)ψky

(y)dkxdkz , (6.14)

where~k is the wavevector,ωk = h̄k2/2m andm the neutron mass. The time-dependent
Schrödinger equation [5],

ih̄
∂Ψ(~r, t)

∂t
= − h̄2

2m
∇2Ψ(~r, t) + V (~r)Ψ(~r, t), (6.15)
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then reduces to three independent differential equations:

d2ψkx
(x)

dx2
+ k2

xψkx
(x) = 0, (6.16)

d2ψkz
(z)

dz2
+ k2

zψkz
(z) = 0 (6.17)

and
d2ψky

(y)

dy2
+
{
k2

y − k2
c (y)

}
ψky

(y) = 0, (6.18)

wherek2
x + k2

y + k2
z = k2 andk2

c (y) = 2mV (y)/h̄2, is called thecritical wavevector
equal to4πρb. ρb is thescattering-length density. k2

c can be interpreted as the potential in
’wave-vector squared units’ and is closely related to the refraction index (see section 3.22).
The scattering-length density can be calculated by

ρb = 〈Nbn〉 −
i

2
〈N(σabs(λ) + σinc)/λ〉 . (6.19)

Herebn is the nuclear-scattering length,N the atomic-number density,σabs(λ) is the neu-
tron absorption cross section and proportional toλ for a1/v-absorber,σinc the incoherent-
neutron cross section and constant for most practical cases. Note that the imaginary part of
ρb is independent of the wavelength for a1/v-absorber, when the incoherent scattering is
negligible. For some homogeneous materials the real and imaginary parts ofk2

c are given in
table 6.2. The first two differential equations are linear second order differential equations
and can easily be solved:

ψkx
(x) = αx(kx)eikxx + βx(kx)e−ikxx (6.20)

and
ψkz

(z) = αz(kz)e
ikzz + βz(kz)e

−ikzz. (6.21)

The last differential equation depends on the potentialV (y). In the regiony > 0 above the
sample the potential is 0 and this equation also reduces to a linear second order differential
equation, with a general solution [38]:

ψky
(y) = e−ikyy + ρeikyy. (6.22)

The first term at the right hand side corresponds to the incident beamψky,in = e−ikyy and
the second term to the (specular) reflected beamψky,sc = ρeikyy, whereρ is the reflectance.
The reflectance only depends onV (y) andky and can be determined by dividing the po-
tential V (y) into a finite number of slices with some (varying) thickness and a constant
potential for each slice (see figure 6.4) [38]. In every slice, j the solution of the Schrödinger
equation has the form of equation (6.21):

yj < y < yj+1 : ψky
(y) = αje

iqj(y−yj) + βje
−iqj(y−yj), (6.23)

whereqj = +
√
k2

y − (k
(j)
c )2 andk(j)

c is the critical wavevector in slicej. The factorsαj

andβj in each slice can be determined by imposing the boundary conditions (continuity of
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Material ℜ(k2
c ) ℑ(k2

c )
10−3 nm−2 10−6 nm−2

Al 2.614(5) < 0.1
Ar1 0.512(3) < 0.1
36Ar1 6.67(4) 0.39(4)
Au 5.54(5) 20.00(3)
B 8.68(8) 350(4)
10B -0.16(50) 1890(20)
C, graphite 9.42(4) < 0.1
C, diamond 14.70(6) < 0.1
Cd 2.83(3) 408(8)
Co 2.84(4) 13.3(2)
Fe 10.07(3) 0.88(4)
Gd 2.5(2)2 5258(13)2

Ni 11.8(2) 3.1(2)
58Ni 16.5(2) 1.5(1)
N2

3 4.087(8) < 0.1
Si4 2.6037(6) < 0.1
Ti -2.45(1) 1.8(1)
SiO2, cristobalite 4.60(2) < 0.1
SiO2, lechatelierite 4.34(2) < 0.1
SiO2, tridymite 4.48(2) < 0.1
SiO2, quartz 5.25(7) < 0.1
H2O -0.7024(26) 9.40(1)
D2O 7.993(6) 0.26(1)

1 Liquid Ar at triple point (83.78 K; 0.687 bar).
2 Strongly wavelength dependent.
3 Liquid N2 at 77.35 K; 1 bar.
4 Single crystal at 295.7 K; 1 bar.

Table 6.2: Real nuclear (ℜ(k2
c )) and (negative) imaginary (ℑ(k2

c )) part of the critical
wavevector for some materials at 293 K and 1 bar for a neutron wavelength of 0.18 nm.
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y1 y2 . . . yj yj+1 . . . yn+1

Substrate

1 2 j n n+ 1

y →

V (y)

V (1)

V (2)

0

↑

Figure 6.4: An arbitrary potentialV (y), divided inn layers of constant potentialV (j).

the wave function and its derivative) at each interface:
(
αj+1

βj+1

)
= Mj

(
αi

βj

)
,

Mj = 1
2

(
1 + ǫj 1− ǫj
1− ǫj 1 + ǫj

)(
eiqjdj 0

0 e−iqjdj

)
,

(6.24)

whereǫj = qj/qj+1. The second matrix at the right-hand side of the equation shifts they
position overdj , the thickness of layerj. d0 is zero and ifj is greater than 0,dj is given by
yj+1 − yj . For the total multilayer withn layers is found

(
αn+1

βn+1

)
= MnMn−1 · · ·M1M0

(
α0

β0

)
= M

(
α0

β0

)
. (6.25)

As in equation (6.22) the reflection and transmission amplitudes are defined by:

α0 = 1 β0 = ρ(q0) ,

αn+1 = τ(q0) βn+1 = 0 ,
(6.26)

so (
τ(q0)

0

)
= M

(
1

ρ(q0)

)
=

(
m11 m12

m21 m22

)(
1

ρ(q0)

)
. (6.27)

Hence, for the reflectance and the reflectivity is found

r(q0) = −m21

m22
and R(q0) = |r(q0)|2 . (6.28)

From equation (6.24) it can easily be shown that it is possible to calculate the reflectance
from recursion relations of the reflectance,rj = βj/αj in each layerj:

rj = e2iqjdj
rF
j + rj+1

1 + rF
j rj+1

, (6.29)
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whererF
j = (ǫj − 1)(ǫj + 1)−1, the Fresnel reflectance from materialj to j + 1 and

rn+1 = 0. This relation is similar to the recursion relations derived by Parrat [39] for X-
ray reflection. The advantage of recursion relations is thatper layer fewer calculations are
needed than for the matrix method. However, for extended repetitions of the same structure
in a multilayer it is faster to use the matrix calculations.

6.2.2 Propagation from sample to detector

A quasi-monochromatic beam at the sample surface can be thought of as an ensemble aver-
age of plane waves. The scattered mutual coherence functioncan be calculated by realizing
that the propagation formula for the mutual coherence function (2.31) consists of two inte-
grals. One integrating the incident-wave function reaching point~r1 from ~r′1 and the other
integrating the incident-wave function reaching point~r2 from ~r′2. To find the scattered mu-
tual coherence function one has to multiply (before integrating) the incident-wave functions
by the appropriate reflectance according to the above equation:

Γsc(~r1, ~r2, τ) =

∫ ∫

y=0

ρ∗(q1)ρ(q2)
cos θ1 cos θ2e

ik̄(R2−R1)

R1R2λ̄2
Γ0(~r′1,

~r′2, τ)d
2r′1d

2r′2,

(6.30)
whereqi = k̄(~r′i ·~ey)/Ri. This equation can also be derived using the results of section C.1.

Now the same procedure as in section 6.1.1 is followed, with the same symbols used. For
a completely homogeneous incoherent source the mutual coherence function at the sample
surface reduces to:

Γsc(~r1, ~r2, τ) =
J0

2vp

e−ik̄vpτ

4π

∫

A0

ρ(q1)
∗ρ(q2)

cos θ1 cos θ2e
ik̄(R2−R1)

R2R1
d2r′1, (6.31)

If the mutual coherence function is sufficiently narrowqi ≈ q1 so that the above equation
reduces further to:

Γsc(~r1, ~r2, τ) =
J0

2vp

e−ik̄vpτ

4π

∫

A0

R(q1)
cos θ1 cos θ2e

ik̄(R2−R1)

R2R1
d2r′1, (6.32)

whereR(q) is the reflectivity defined asR(q) = ρ(q)ρ∗(q). If the source aperture is rectan-
gular the integral can be evaluated as:

Γsc(~r1, ~r1 + ~r, τ) = R̃(q,∆q, α)Γin(~r1, ~r1 + ~r, τ), (6.33)

whereq = k̄H/r1, ∆q = k̄Wy/2r1, α =
√

∆x/πk̄ and

R̃(q,∆q, α) =

∫ q+∆q

q−∆q R(η)e−i π
2 α2η2

dη
∫ q+∆q

q−∆q
e−i π

2 α2η2
dη

, (6.34)

is a folded reflectivity. Note that for∆x = 0 this reduces to:

R̃(q,∆q, 0) =

∫ q+∆q

q−∆q R(η)dη

2∆q
. (6.35)
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If the scattering (or reflection) is mainly in the specular direction and the detector area is
large enough, the total count rate in the detector is given byequation (6.12):

Id = 2vp

∫

As

q2

k̄2
R̃(q,∆q, 0)Γin(~r1, ~r1, 0)d2r1, (6.36)

which using equation (6.8) reduces for an incoherent sourceto:

Id = J0WzWy

∫

As

q2

k̄2

R̃(q,∆q, 0)

4πr21
d2r1 (6.37)

and for the slit geometry assumed here:

Id =
J0AsWzWy

4πr21

∫ q+∆q

q−∆q
η2R(η)dη

k̄22∆q
. (6.38)

Note that the total reflected beam is detected by the detectorand it is assumed that the
sample is small so that the resolution is due to the entrance diaphragm and the distance to
the sample only.

6.3 Born approximation

To find the scattered neutron count rate due to a rough surface(described in appendix B)
the first Born approximation can be used. It is based on equation (3.18), whereGs is found
using equation (3.21):

Sk(~q) =

∫
e−i~q·~r

∫

Vs

ρb(~rs)ρb(~rs + ~r)d3rsd
3r, (6.39)

Using equation (3.19) for the scattering length density andequation (B.6) for the potential
this becomes:

Sk(~q) = ρ2
b

∫

Vs

∫

Vs

e−i~q·(~r−~rs)d3rsd
3r, (6.40)

whereρb = −2πmV0/h
2, the scattering length density of the homogeneous sample and

the integration extends over the sample volume. Transforming to Cartesian coordinates and
ignoring effects due to the finite beam cross section this becomes:

Sk(~q) =
ρ2

bAs

q2y

∫

As

e−i(qxx+qzz)

{
e−

q2
yg(x,z)

2 − 2 cos(qyd)e
−

q2
yσ2

2 + 1

}
dxdz, (6.41)

where~r = (x, y, z)T and~q = (qx, qy, qz)
T. The first term inside the integral represents

the beam scattered from the top (rough) surface, the second term the interference between
the top and bottom and the third term the beam scattered from the bottom (flat) surface. In
general the second and third term are ignored, yielding [40]:

Sk(~q) = ρ2
bAs (Ss(~q) + Sd(~q)) , (6.42)

where

Ss(~q) =
4π2e−q2

yσ2

q2y
δ(qx)δ(qz) (6.43)
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is thespecularcomponent and

Sd(~q) =
e−q2

yσ2

q2y

∫

As

e−i(qxx+qzz)
(
eq2

yC(x,z) − 1
)
dxdz (6.44)

thediffusecomponent of the scattering. Hence, the sample correlationfunction can also be
split in two components:Gs(~r) = Gs,s(~r) +Gs,d(~r):

Gs,s(~r) =
1

(2π)3

∫
ei~q·~rSs(~q)d~q = σf

( y

2σ

)
, (6.45)

wheref(x) = x erf(x) + e−x2

/
√
π and

Gs,d(~r) =
1

(2π)3

∫
ei~q·~rSd(~q)d~q. (6.46)

The incident mutual coherence function is given by equation(6.4):

Γin(~r1, ~r1 + ~r, τ) ≈ J0

2vp

e−ik̄(x+vpτ)

4πr21
× (6.47)

∫ H+
Wy

2 −y1

H−
Wy

2 −y1

ei π
2 (κ2

xy′2+2κyy′)dy′
∫ Wz

2 −z1

−Wz
2 −z1

ei π
2 (κ2

xz′2+2κzz′)dz′,

whereκ2
x = k̄ x

πr2
1
, κy = k̄y

πr1
andκz = k̄z

πr1
. The detector count rate can be determined by

applying equation (3.10):

Id = 2vp

∫
Rout(~r1, ~r1 + ~r)Gs(~r)Γin(~r1, ~r1 + ~r, 0)d3r, (6.48)

where

Rout(~r1, ~r1 + ~r) =

∫

Ad

e−i~p·~r

|~rd − ~r1|2
d2rd (6.49)

and~p = k̄(~rd−~r1)/ |~rd − ~r1| and it was assumed thatcos θd ≈ 1. Conform equation (6.13)
it follows that:

~p · ~r ≈ k̄
(
−x+

(yd − y1)2
2r2ds

x+
(zd − z1)2

2r2ds

x− yd − y1
rds

y +
zd − z1
rds

z

)
(6.50)

andRout(~r1, ~r1 + ~r) can be evaluated as:

Rout(~r1, ~r1+~r) =
eik̄x

r2ds

∫ Hd−y1+
Dy

2

Hd−y1−
Dy

2

ei π
2 (2kyyd−k2

xy2
d)dyd

∫ Dz
2 −z1

−Dz
2 −z1

ei π
2 (−2kzzd−k2

xz2
d)dzd,

(6.51)
wherek2

x = k̄ x
πr2

ds

, ky = k̄y
πrds

andkz = k̄z
πrds

. Dy andDz are the width and height of

the detector andHd they-position of the detector. In general equation (6.48) can only be
evaluated numerically. In special cases one can try to reduce the above integral.
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6.3.1 Specular count rate

For the specular scattered neutrons this can be done by realizing thatGs,s(~r) does not
depend onx or z and hence the integral reduces to (y1 = 0):

Id =
J0π

k̄2r21r
2
ds

∫
Gs,s(~r)

∫ Dz
2 −z1

−Dz
2 −z1

∫ Wz
2 −z1

−Wz
2 −z1

× (6.52)

∫ Hd+
Dy

2

Hd−
Dy

2

∫ H+
Wy

2

H−
Wy

2

e
ik̄y
(

yd
rds

+ y′

r1

)
δ

(
z′

r1
− zd

rds

)
δ

(
y′2 + z′2

2r21
− y2

d + z2
d

2r2ds

)
dy′dyddz

′dzddy,

where it was used that:
∫
e−iqxxdx

∫
e−iqzzdz = 4π2δ(qx)δ(qz). (6.53)

Further integrating overzd, yd and assuming the detector width and height are large enough
to catch all specular reflected neutrons, yields:

Id =
J0Wzπ

k̄2r1

∫
Gs,s(~r)

∫ H+
Wy

2

H−
Wy

2

e2ik̄yy′/r1

y′
dy′dy. (6.54)

The inner integral overy′ can be evaluated assuming thaty′ in the nominator is constant,
which is a good approximation whenWy ≪ H . Then

Id =
2πJ0WzWy

k̄r21qy

∫
Gs,s(~r)e

iqyy sin(k̄yWy/r1)

k̄yWy/r1
dy. (6.55)

whereqy = 2k̄H/r1.
If the height of the entrance diaphragms is sufficiently small yk̄Wy/r1 ≪ 1 then the sinc

function≈ 1. The integral then reduces to a one-dimensional Fourier transform comparable
to equation (6.41) with the transform overx andy omitted, resulting in equation (6.43)
where the factor4π2δ(qx)δ(qz) is omitted:

∫
Gs,s(~r)e

iqyydy =
ρ2

bAs

q2y
e−q2

yσ2

. (6.56)

Finally the detector count rate becomes:

Id =
2πJ0WzWyρ

2
bAs

k̄r21

e−q2
yσ2

q3y
. (6.57)

For the empty beam the detector count rate is given by equation (2.50):

Id,empty = 2vpAbΓin(~r1, ~r1, 0) =
J0AbWzWy

4πr21
, (6.58)

whereAb is the beam cross section at the sample position. If it is assumed the sample area
covers the whole incident beam, thenAs = Ab/ sin θs whereθs ≈ qy/2k̄ is the angle
between beam and the sample surface. The specular componentof the reflectivity, defined
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as the count rate in the detector due to the specular component of the sample correlation
function divided by the count rate of the whole beam at the sample position becomes [40]:

Rs =
16π2ρ2

be
−q2

yσ2

q4y
. (6.59)

For σ = 0 this reduces to the largeq limit of the Fresnel theory, equivalent to Porods
law [41]. If the height of the entrance diaphragm is not sufficiently small equation (6.54)
can be rewritten as:

Id =
J0WzWy4πρ2

bAb

r21q
4
y

1

η

∫ η/2

−η/2

e−(x+1)2q2
yσ2

(x+ 1)3
dx (6.60)

whereη = Wy/H and the specular component of the reflectivity becomes:

Rs =
16π2ρ2

be
−q2

yσ2
y

q4y

1

η

∫ η/2

−η/2

e−(x+1)2q2
yσ2

(x+ 1)3
dx, (6.61)

which can be approximated by:

Rs =
16π2ρ2

be
−q2

yσ2
y

q4y

sinh ηq2yσ
2
y

ηq2yσ
2
y

. (6.62)

The functionsinhx/x ≥ 1 so that the reflectivity measured with a finite resolution is al-
ways larger than the one calculated using the above method. The result is that a fit of the
reflectivity of measured data with equation (6.59) always yields a roughness which is too
small. This was already mentioned by Braslau at al. [42].

6.3.2 Diffuse count rate

The diffuse component of the scattering can be evaluated analytical if it is assumed that all
instrumental resolution effects can be ignored. This can beachieved by reducing the width
and height of the source and detector to infinitely small values. Then equation (6.48) can be
reduced to:

Id =
J0DyDzWyWz

4πr21r
2
ds

ρ2
bAsSd((qx, qy, qz)

T
), (6.63)

whereqx = k̄
(

H2+z2
1

2r2
1
− H2

d+(zd−z1)
2

2r2
ds

)
, qy = k̄

(
H
r1

+ Hd

rds

)
andqz = k̄

(
z1−zd

rds
− z1

r1

)
.
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6.4 Distorted-wave Born approximation

The first Born approximation is only valid for weak scattering. If the intensity of the re-
fracted beam becomes of the same order as the incident beam (near the critical angle for
total reflection) this condition is no longer valid and the results of the previous section can
no longer be applied. In that case one can try to calculate theintensity of the refracted or
reflected beam by using the distorted-wave Born approximation [40], [43], [44], [45]. In
short it comes down to making an accurate enough estimate of the neutron wave function
in and near the sample and use this estimate to calculate the scattered intensity (see also
section 3.1). In most treatments the estimate of the neutronwave function in the sample
is based on the solution of the one-dimensional Schrödinger equation for a smooth surface
with a sharp or graded interface. First the incident-wave function must be determined, then
the scattering of the incident-wave function into the scattered-wave function and then the
scattered mutual coherence function must be established.

6.4.1 Scattering of incident-wave function

Let Ψ(~r, t) denote a neutron wave function characterizing the field at point ~r at timet. The
neutron wave functionΨ(~r, t) is constructed by its constituting monochromatic plane-wave
components (see also section 2.1):

Ψ(~r, t) = e−iωkt

∫
ψ(~k,~r)d2k, (6.64)

where~k is the wavevector,ωk = h̄k2/2m andm the neutron mass. The integral is over two
dimensions only as for a monochromatic wave the length of thewavevector is constant. If
further it is assumed that the incident neutron beam is directed to positive value’s ofx and

z only, the wavevector~k = ~k‖ + ky~ey, whereky = ~k · ~ey so thatky = −
√
k̄2 − k2

‖. The

negative sign denotes that the plane wave is traveling in the−y direction. The plane-wave
components of the incident beam can be described by:

ψin(~k,~r) = ψ0(~k‖)e
i~k·~r. (6.65)

Hence, the incident-wave function can be described by:

Ψin(~r, t) = e−iωkt

∫
ei~k·~rψ0(~k‖)d

2k‖. (6.66)

For a surface with some roughness or structure the scattering potentialV (~r) can be split in
two parts:

V (~r) = V (0)(y) + V (1)(~r), (6.67)

whereV (0)(y) represents the potential of the smooth surface andV (1)(~r) is the disturbance
of the potential due to the interface roughness or structure. Using the previous defined
height of the surface the above potentials are given by (assuming the sample thickness is
much larger than the surface roughness):

V (0)(y) =
h̄2k2

c

2m
u(−y) (6.68)
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and

V (1)(~r) =
h̄2k2

c

2m
(u(y)− u(y −H(x, z))), (6.69)

wherek2
c = 2mV0/h̄

2 = 4πρb. Assume the distortion of the scattered wave can be de-
scribed by:

ψsc(~k,~r) = ψ(0)
sc (~k,~r) + ψ(1)

sc (~k,~r), (6.70)

whereψ(0)
sc (~k,~r) is the undisturbed scattered-wave function from the perfectly flat sample

surface. Using equation (3.1) it can be shown that

ψ(0)
sc (~k,~r) = ψin(~k,~r)− 2m

h̄2

∫
G0(~r, ~rs)V

(0)(ys)ψ
(0)
sc (~k,~rs)d

3rs (6.71)

and

ψ(1)
sc (~k,~r) = −2m

h̄2

∫
G0(~r, ~rs)

(
V (0)(ys)ψ

(1)
sc (~k,~rs) + V (1)(~rs)ψsc(~k,~rs)

)
d3rs,

(6.72)
whereG0(~r, ~rs) is the free particle Green function for scattered waves. Forthe solution
of this last equation the first term inside the integral is neglected, which is allowed if the
first integral is much smaller than the second. This is the case if ψ(1)

sc (~k,~rs) ≪ ψ
(0)
sc (~k,~rs)

or whenV (1)(~rs) has only Fourier components much smaller thank̄. This is why this
approximation is called distorted-waveBorn approximation. In the second term the equality
of equations (3.1) and (3.4) can be used, so that up to first order the scattered-wave function
becomes:

ψ(1)
sc (~k,~r) = −2m

h̄2

∫
G(+)(~r, ~rs)V

(1)(~rs)ψ
(0)
sc (~k,~rs)d

3rs. (6.73)

To solve this equation a precise estimate of the Green function and the undisturbed scattered-
wave function is needed. The Green function can be estimatedby means of the Green func-
tion for a smooth surface, which is a further approximation.Note thatψsc contains both
the scattering due to the smooth potentialV (0)(y) and due to the potential of the surface

roughness or structureV (1)(~r). This is split in a part due to the smooth surface only (ψ
(0)
sc )

and due to the surface roughness or structure (ψ
(1)
sc ). However, for evaluating the total scat-

tering one should not neglect the interference between the two parts when determining the
scattered mutual coherence function. In general the interference term reduces the specular
reflected part of the mutual coherence function as will be discussed in section 6.4.5.

6.4.2 Undisturbed scattered-wave function

The plane waves which are reflected or refracted at the perfectly flat sample surface are
given by (assuming a very thick sample):

ψ(0)
sc (~k,~r) = ψ0(~k‖)e

i~k‖·~rΨk(y), (6.74)

where
Ψk(y) = eikyy + ρ(ky)e−ikyy y ≥ 0,

Ψk(y) = τ(ky)eik′
yy y < 0,

(6.75)
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andk′y = −
√
k2

y − k2
c , the negative sign is used asky is also negative due to the reflec-

tion geometry.k2
c = 2mV0/h̄

2 = 4πρb, ρ(ky) = (ky − k′y)/(ky + k′y) andτ(ky) =
2ky/(ky + k′y) (see also section 6.2). It can also be derived by transforming equation (6.71)
(see section 3.1) to:

ψ(0)
sc (~k,~r) = ψin(~k,~r)− 2m

h̄2

∫
G(+)(~r, ~rs)V

(0)(ys)ψin(~k,~rs)d
3rs. (6.76)

Inserting the incident-wave function (6.65), the appropriate Green function (see appendix D)
and the undisturbed potential (6.68):

ψ(0)
sc (~k,~r) = ψ0(~k‖)e

i~k‖·~r

(
eikyy + e−ikyy k

2
cτ(ky)

2iky

∫ 0

−∞

e−i(ky+k′
y)ysdys

)
, (6.77)

for y ≥ 0. The integral overys can be performed assuming a little absorption so that the
lower limit vanishes, yielding

ψ(0)
sc (~k,~r) = ψ0(~k‖)e

i~k‖·~r
(
eikyy + ρ(ky)e−ikyy

)
. (6.78)

The same can be done fory < 0, yielding equation (6.74). This solution for the undis-
turbed scattered-wave function is used by Steyerl [43], Sinha et al. [40], Pynn [44] and De
Boer [45]. Weber et al. [46] were not able to fit their data withthis approximation and found
a good fit with the following approximation for the undisturbed scattered-wave function:

Ψk(y) = eikyy + ρr(ky)e−ikyy y ≥ 0,

Ψk(y) = τr(ky)eik′
yy y < 0,

(6.79)

whereρr andτr are the transmission and reflection coefficients for theroughsurface deter-
mined by an appropriate graded interface.

6.4.3 Green function

The Green function for scattered waves can be approximated by taking the Green function
for scattered waves for the undisturbed potential [43], [47], [48] defined by:

(
∇2 + k̄2 − 2mV (0)(~rs)

h̄2

)
G(+)(~r, ~rs) = δ(~r − ~rs), (6.80)

which for large distances (|~r − ~rs| > λ̄) and small scattering angle reduces to (see also
appendix D):

G(+)(~r, ~rs) = G0(~r − ~rs)eipyysΨp(ys), (6.81)

whereys = ~rs · ~ey, ~p = k̄(~r − ~rs)/ |~r − ~rs|, G0(~r) is the free particle Green function as
defined in equation (2.33), which can be expressed in terms of~p:

G0(~r) =
ei~p·~r

4πr
(6.82)
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andΨp(y) is the part of the Green function determined by the sample details:

Ψp(y) = e−ipyy + ρ(py)eipyy y ≥ 0,

Ψp(y) = τ(py)e−ip′
yy y < 0,

(6.83)

whereρ(py) = (py − p′y)/(py + p′y), the reflection coefficient of the wave reflecting at the

sample surface (see also section 6.2).p′y = +
√
p2

y − k2
c , the accent denotes the value of

the variable in the sample material and the positive sign is taken aspy is also positive and
τ(py) = 2py/(py +p′y), the transmission of the wave function traversing the sample surface
from outside to inside. Sinha et al. [40] use forΨp(y) the so-calledtime reversed solution:

Ψp(y) = e−ipyy + ρ(py)∗eipyy y ≥ 0,

Ψp(y) = τ(py)∗e−ip′
yy y < 0,

(6.84)

which only deviates by the complex conjugated values ofρ andτ , which do not influence
the final results. Pynn [44] decided to use:

Ψp(y) = e−ipyy + ρr(py)∗eipyy y ≥ 0,

Ψp(y) = τr(py)∗e−ip′
yy y < 0,

(6.85)

whereρr andτr are the reflection and transmission coefficients for the rough surface. De
Boer [45] mentioned theirregular solution of the one-dimensional Scrödinger equation:

Ψp(y) = τ̃ (py)e−ipyy y ≥ 0,

Ψp(y) = e−ip′
yy − ρ(py)eip′

yy y < 0,

(6.86)

which gives the transmission and reflection amplitude of thewave starting inside the sample
traveling outside. He uses this to find the one-dimensional Green function and gives the
same formula as Sinha et al.

6.4.4 Scattered-wave function

Finally, to conclude, equation (6.70) can be inserted in equation (6.64) to find the scattered-
wave function in the far-zone:

Ψsc(~r, t) = e−iωkt

∫ {
ψ(0)

sc (~k,~r) + ψ(1)
sc (~k,~r)

}
d2k‖, (6.87)

where
ψ(0)

sc (~k,~r) = ρ(ky)e−2ikyψin(~k,~r) = ρ(py)ψ0(~p‖)e
i~p·~r, (6.88)

where~p‖ = ~k‖ andpy = −ky. The first term of equation (6.74) (y ≥ 0) is ignored as it
does not contribute to the mutual coherence function at the detector position.

Using the Green function derived in the previous section andthe undisturbed scattered-
wave function (in the sample), equation (6.73) in the far zone reduces to:

ψ(1)
sc (~k,~r) = −2m

h̄2

∫
ψ0(~k‖)

ei~p·~re−i ~Q‖·~rs

4π |~r − ~rs|
Ψk(ys)Ψp(ys)V

(1)(~rs)d
3rs, (6.89)

where~Q‖ is the wavevector transfer parallel to the surface defined as~Q‖ = ~p‖ − ~k‖.
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6.4.5 Scattered mutual coherence function

The scattered-wave function (equation (6.87)) can be inserted in the definition of the mutual
coherence function (equation (2.6)) to find the scattered mutual coherence function, which
splits up into four parts:

Γsc(~r1, ~r2, τ) = Γ(0,0)
sc (~r1, ~r2, τ) + Γ(1,0)

sc (~r1, ~r2, τ) + Γ(0,1)
sc (~r1, ~r2, τ) + Γ(1,1)

sc (~r1, ~r2, τ),
(6.90)

where

Γ(a,b)
sc (~r1, ~r2, τ) = e−iωkτ

∫ ∫ 〈
ψ(a)

sc (~k1, ~r1)
∗ψ(b)

sc (~k2, ~r2)
〉
d2k1,‖d

2k2,‖ (6.91)

and indexesa andb have values1 or 0.
The part with index(0, 0) represents the mutual coherence function due to scattering

from the undisturbed potential,V (0). The derivation of this part is given in section 6.2.2
or appendix C. The parts with indexes(1, 0) and (0, 1) represent the interference terms
between both wave functions. The part with index(1, 1) represents the mutual coherence
function of the scattering due to the rough or structured potentialV (1)(~r).

If ψ(a)
sc andψ(b)

sc are inserted in the above equation the ensemble average can be put inside

the integrals resulting in a factor
〈
ψ0(~k‖)

∗ψ0(~k‖)
〉

. As shown in appendix C this factor can

be calculated by means of the incident mutual coherence function. If the incident mutual
coherence function is homogeneous, the wavevector distributionWin(~rs, ~k‖) as defined in

equation (C.7) can be used for
〈
ψ0(~k‖)

∗ψ0(~k‖)
〉

.

Another term that occurs when evaluating the(1, 1) term is the product of two Green
functions, each depending on its own vector~p. According to its definition~p is dependent
on ~rs, which is different for both wave functions in equation (C.4). However, vector~p
of one wave function can be approximated by vector~p of the other as long as the sample
correlation length is much smaller than

√
rds/k̄ (≈ 6 µm for a detector distance of 1 m and

a wavelength of 0.2 nm). This is just the same effect as discussed in section 6.1.2.
Using these approximations it can be shown that (neglectingthe far-zone interference

between incident and scattered beam):

Γ(1,1)
sc (~rd, ~rd + ~r, τ) =

∫ ∫ ∫
ei(~p·~r−~Q‖·~s−ωkτ)Win(~rs, ~k‖)

4π2r2ds

Ξ(~s,~rs)d
3sd3rsd

2k‖,

(6.92)
where

Ξ(~s,~rs) = Ψk(ys + sy)Ψk(ys)
∗Ψp(ys + sy)Ψp(ys)

∗

(
m

2πh̄2

)2

V (1)(~rs)
∗V (1)(~rs + ~s).

(6.93)
If the sample size is much smaller than the distance between sample and detectorrds and
Win(~rs, ~k‖) can be taken constant over the sample volume and the scattered mutual cohe-
rence function reduces to:

Γsc(~rd, ~rd + ~r, τ) =
ei(~p·~r−ωkτ)

4π2r2ds

∫
Win(~rs, ~k‖)Sk(~p,~k)d2k‖, (6.94)
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where thesample surface structure factoris defined as:

Sk(~p,~k) =

∫
e−i ~Q‖·~r‖Gs(~p,~k,~r)d

2r‖ (6.95)

and thesample correlation functionconsists of 4 parts (see also appendix D):

G(0,0)
s (~p,~k,~r) =

R(ky)p2
yAs

4π2
, (6.96)

G(1,0)
s (~p,~k,~r) =

(
m

2πh̄2

)2

V0
τ(py)2

2ipy

∫
Ψp(ys)

∗Ψk(ys)
∗V (1)(~rs)

∗d3rs, (6.97)

G(0,1)
s (~p,~k,~r) = G(1,0)

s (~p,~k,~r)∗ (6.98)

and

G(1,1)
s (~p,~k,~r‖) =

(
m

2πh̄2

)2

× (6.99)

∫ ∫
Ψp(ys)

∗Ψk(ys)
∗Ψp(ys + y)Ψk(ys + y)V (1)(~rs)

∗V (1)(~rs + ~r‖)d
3rsdy.

If the sample size can not be neglected but the extension of the sample correlation func-
tion is much smaller than the distance between sample and detector, the integral over the
sample volume can be split up in parts. For each part the aboveapproximation holds and all
the parts are added resulting in:

Γsc(~rd, ~rd + ~r, τ) =
1

As

∫

As

ei(~p·~r−ωkτ)

4π2r2ds

∫
Win(~rs, ~k‖)Sk(~p,~k)d2k‖d

2rs, (6.100)

where the summation over the parts is transformed back into an integral.
All information about the sample is contained in the sample correlation functionsG(a,b)

s .
G

(0,0)
s represents the sample correlation function of the flat surface.G(1,0)

s andG(0,1)
s rep-

resent the correlation between the flat surface and the surface structure.G(1,1)
s represents

the correlations in the surface structure. Note thatG
(1,1)
s is determined by three factors: the

incident-wave function (represented byΨk), the undisturbed scattered-wave function (Ψp)
and the sample structure potential (V (1)).

To determine this function Steyerl [43] assumed that both Green function and undisturbed
scattered-wave function could be approximated for allys by their expressions forys = 0,
which is only reasonable ifpyσ ≪ 1 andkyσ ≪ 1, whereσ is the standard deviation of the
height distribution. Sinha et al. [40], Pynn [44] and othersassumed that for diffuse scattering
both Green function and undisturbed scattered-wave function could be approximated for
all ys by their analytic expressions for eitherys < 0 or ys ≥ 0. Since both functions
and their derivatives are continuous atys = 0 this is a reasonable approximation as long
askcσ < 3 [44]. Pynn and others assumed that this approximation wouldalso hold for
the specular component, while Sinha et al. used the full expression dividing the specular
contribution up into four components.

Using the above approximation the sample correlation function becomes:

G(1,0)
s (~p,~k,~r) =

(
m

2πh̄2

)2
T (ky)T (py)

2ipy
V0

∫
e2i(p′

y)∗ysV (1)(~rs)
∗d3rs (6.101)
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T

k⊥/kc

Figure 6.5: Transmission factor,T as function of the component of the wavevector per-
pendicular to the sample surface.kc is the critical wavevector depending on the sample
scattering length density,ρb (k2

c = 4πρb).

and

G(1,1)
s (~p,~k,~r‖) =

(
m

2πh̄2

)2

T (ky)T (py)× (6.102)

∫
eiκ∗

yy

∫
ei(κ∗

y−κy)ysV (1)(~rs)
∗V (1)(~rs + ~r‖)d

3rsdy,

whereκy = p′y − k′y equals the wavevector transfer inside the sample (rememberthat
ℜ(k′y) < 0 andℜ(p′y) > 0) andT (ky) andT (py) are the transmission factors for the
incident and reflected beam respectively, given in table 6.3. If κy is real the sample surface
structure factor reduces to the product ofT (ky)T (py) times the Fourier transform of the
sample correlation function as given in equation (6.39), where~q = ~Q‖ − κy~ey. The factors
T (ky) andT (py) are shown in figure 6.5. The maxima are due to standing waves that build
up at the surface at the critical angle. These result in so-called Yonedapeaks [49] in the
diffuse scattering pattern.

6.4.6 Sample surface structure factor

The sample surface structure factor can be split up in a specular part and diffuse part in a
similar way as introduced for the Fourier transform of the sample correlation function in
section 6.3. It consists of four terms:

Sk(~p,~k) = S
(0,0)
k (~p,~k) + S

(1,0)
k (~p,~k) + S

(0,1)
k (~p,~k) + S

(1,1)
k (~p,~k), (6.103)
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where the first term is the contribution due to the flat surface(V (0)(ys)):

S
(0,0)
k (~p,~k) = R(py)p

2
yAsδ

(2)(~q‖) =
Asπ

2ρ2
bT (ky)2

p2
y

δ(2)(~q‖). (6.104)

The two-dimensional Dirac-delta function indicates that this part of the sample surface
structure factor only contributes to the specular reflection: ~q‖ = 0, so ~p‖ = ~k‖ and
py = −ky. The second and third terms are interference effects between the flat surface
and surface structure and can be evaluated in the same way as before:

S
(1,0)
k (~p,~k) =

Asπ
2ρ2

bT (ky)2

py(p′y)∗
δ(2)(~q‖)

(
E[e2i(p′

y)∗H(x,z)]− 1
)
, (6.105)

whereE[x] is the expectation value ofx. If p′y is real and the surface structure is a Gaussian

distributed roughness, the expectation value is given by equation (B.2):e−2(p′
y)2σ2

. Further

S
(0,1)
k (~p,~k) = S

(1,0)
k (~p,~k)∗. (6.106)

Note that in the total reflection region (as long aspy ≤ kc) p′y is purely imaginary and the

sum ofS(1,0)
k andS(0,1)

k is 0. The last term is due to the structure of the surface:

S
(1,1)
k (~p,~k) = −

p2
y

|κy|2
S

(0,0)
k − py

p′y
S

(1,0)
k (~p,~k)− py

(p′y)∗
S

(0,1)
k (~p,~k)+ (6.107)

ρ2
bAs

T (ky)T (py)

|κy|2
∫ ∫

e−i(qxx+qzz)E[eiκ∗
yH(xs,zs)−iκyH(xs+x,zs+z)]dxdz.

If κy is real and the surface structure is a Gaussian distributed roughness, the expectation

values are given by equation (B.3):e−κ2
yg(x,z)/2 and ifκy is complex the expectation value

is given by [40], [50]:

E[eiκ∗
yH(xs,zs)−iκyH(xs+x,zs+z)] = e−(κy−κ∗

y)2σ2/2e−|κy|
2g(x,z)/2 +O(κ2

yσ
2). (6.108)

Using equations (6.100) and (C.28) the neutron flux at the detector position becomes:

~J(~rd, ~rd, 0) =
J0

2vp4πr2dsr
2
s0

∫

A0

Sk(~p,~k)d2r′, (6.109)

Sinha et al. [40] Pynn [44] Weber [46]
De Boer [45]

Ψk(y) τ(ky)eik′
yy τ(ky)eik′

yy τr(ky)eik′
yy

Ψp(y) τ(py)∗eip′
yy τr(py)∗eip′

yy τr(py)∗eip′
yy

T (ky) τ(ky)τ(ky)∗ τ(ky)τ(ky)∗ τr(ky)τr(ky)∗

T (py) τ(py)τ(py)∗ τr(py)τr(py)∗ τr(py)τr(py)∗

Table 6.3: Undisturbed scattering function,Ψk(y), Green functionΨp(y) and transmission
factors,T (py) andT (py) for calculation of the diffuse sample surface structure factor from
different references.
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where~k = k̄(~rs0−~r′)/rs0. By using equation (2.44) the count rate in the detector becomes:

Id =
J0

4πr2dsr
2
s0

∫

Ad

∫

A0

Sk(~p,~k)d2r′d2rd. (6.110)

Assume, as before (equation (6.42)), the sample surface structure factor can be split in a
specular and diffuse component:

Sk(~p,~k) = ρ2
bAs

(
Ss(~p,~k) + Sd(~p,~k)

)
, (6.111)

then, the specular component is given bypy > kc:

Ss(~p,~k) =
π2T (ky)2

p2
y

(
1 +

py

p′y

(
e−2ℜ(p′

y)2σ2 − 1
))2

δ(2)(~q‖), (6.112)

which reduces to the first factor only in casepy ≤ kc and the diffuse component by:

Sd(~p,~k) =
T (ky)T (py)e

−ℜ(κ2
y)σ2

|κy|2
∫ ∫

e−i(qxx+qzz)
(
e|κy|

2C(x,z) − 1
)
dxdz. (6.113)

Note that these structure factors have essential the same form as the expressions derived us-
ing the Born approximation (section 6.3). They only differentiate via the factorT (ky)T (py)
and the different wavevectorsp′y andκy used in the exponentials. For valuespy ≫ kc the
expressions become the same.

6.4.7 Specular count rate

The count rate due to the specular structure factor can be calculated by inserting it in equa-
tion (6.110):

Is
d =

J0As

4πr2s0k̄
2

∫

A0

k2
yRDWBA(ky)d2r′, (6.114)

where~k = k̄(~rs0 − ~r′)/rs0. For the specific geometry as discussed in section 6.1 this can
be reduced to:

Is
d =

J0AsWzWy

4πr2s0

∫ q+∆q

q−∆q q
2RDWBA(q)dq

k̄22∆q
, (6.115)

whereq = k̄H/r1 and∆q = k̄Wy/2r1, equal to equation (6.38). The specular reflectivity
is given for the present case by:

RDWBA(ky) = R(ky)

(
1 +

py

p′y

(
e−2ℜ(p′

y)2σ2 − 1
))2

. (6.116)

This specular reflectivity was obtained by Sinha et al. [40] within the same accuracy as in
the present case and can be reduced to (ky > kc):

RDWBA(ky) = R(ky)
(
e−4kyk′

yσ2

+O(ky(k′y)3σ4)
)
, (6.117)

equal to that given by Ńevot and Croce [51]. Approximately the same result can be obtained
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ln
(

RDW BA(ky)
R(ky)

)

(kcσ)2

ky/kc

Figure 6.6: Ratio of reflectivity for several approximations. Full line: according to Sinha,
Pynn and present text forkcσ ≪ 1; long-dashed line: present textkcσ = 0.2; short-dashed
line: present textkcσ = 0.3.

with a graded interface where the profile of the index of reflection is the average over the
xz-plane [38], [44], [2].

The difference between the above approximations for the specular reflectivity of a rough
surface is shown in figure 6.6. In this figureln (RDWBA(ky)/R(ky))/(kcσ)2 is plotted
as function ofky/kc. In the same figure the specular reflectivity obtained by Sinha and
Pynn is shown. Clearly there is some difference, however when kcσ < 0.3 the difference
between the two approximations can be neglected, more so forthe region close to the critical
edge atky ≈ kc. De Boer [45] introduces an approximation forRDWBA that depends on
the correlation length of the roughness. This correction however, is small and only of some
importance atky ≈> kc. For more accurate results, also the coherence length of theneutron
beam should be incorporated in the above picture, viz by using equation (C.6) instead of
(C.7) and equation (6.92) instead of (6.94). In general, this can only be done numerically.
However, in view of the accuracy of the distorted wave born approximation (the difference
between several versions of the distorted wave born approximation can not be neglected) in
general this will not yield a more reliable interpretation of the experimental data.

6.4.8 Diffuse count rate

The count rate due to the diffuse structure factor can be calculated by inserting it in equa-
tion (6.110). If both the detector area and the source area are very small this reduces to:

Id
d =

J0A0AdAsρ
2
b

4πr2dsr
2
s0

Sd(~p,~k), (6.118)
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θ

Reflected beam

← phase shift= 2Hk̄ sin θ

θ

H(x, z)

Incident beam

← in phase

Figure 6.7: Model of grating with neutron beam parallel to grove direction of grating. The
extra phase-shift acquired by the neutron wave function fora height difference ofH(x, z)
is indicated in the figure.

comparable to equation (6.63) except for the enhancement factorsT (ky) andT (py).
This is the same as given by Sinha et al. [40], Pynn [44], De Boer [45] and others (see

also table 6.3). Weber et al. [46] finds that this solution is not able to fit their data and
argues that for the Green function the time reversed versionof the solution of the rough
surface should be taken, and for the undisturbed wave the solution itself. If this is done,
their data can be fitted by the above theory. De Boer [45], [52]argues that it depends on the
correlation length of the sample surface structure factor which solution one should actually
take.

6.5 Phase-object approximation

The distorted wave born approximation is only valid for scattering at surfaces with a rela-
tively small roughness or surface structurekyσ ≪ 1. If kyσ becomes of order one or larger
this condition is no longer valid and the results of the previous section can no longer be ap-
plied. In that case one can try to calculate the intensity of the refracted or reflected beam by
using the phase-object approximation as discussed here. Inshort it comes down to making
an accurate enough estimate of the neutron wave function in and near the sample and use
this estimate to calculate the scattered intensity (see also section 3.1). An example of such
a sample is shown in figure 6.7. In this figure a Silicon gratingis shown where the surface
has been etched away, resulting in a variable heightH(x, z) of the surface.

Again, the estimate of the neutron wave function in the sample is based on the solution
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of the one-dimensional Schrödinger equation for a smooth surface with a sharp or graded
interface. However, now it is assumed that this interface varies in height asH(x, z). The
incident-wave function is the same as before. The scattering of the incident-wave function
into the scattered-wave function is determined by an appropriate Green function and then
the scattered mutual coherence function is established. For a surface with some roughness
or structure the scattering potentialV (~r) is given by:

V (~r) =
h̄2k2

c

2m
u(H(x, z)− y), (6.119)

wherek2
c = 2mV0/h̄

2 = 4πρb. The Green function for scattered waves can be approx-
imated by taking the Green function for scattered waves for the undisturbed potential at
position(x, z) along the sample surface (see Appendix D):

G(+)(~r, ~rs) =
1

4π2

∫ ∞

0

ei~p·(~r−~rs) 1

2ipy
eipy(ys−H(xs,zs))Ψp(ys −H(xs, zs))d

2p‖,

(6.120)
whereΨp(~r) is the part of the Green function determined by the sample details. The
scattered-wave functionψsc can be found using equation (3.4) inserting the above Green
function and the incident-wave function given by equation (6.65):

ψsc(~k,~r) = ψin(~k,~r)− ρbψ0(~k‖)

π
× (6.121)

∫ ∞

0

τ(py)ei~p·~r

2ipy

∫
e−i ~Q‖·~rs,‖ei(p′

y−py)H(xs,zs)

∫ H(xs,zs)

−∞

ei(ky−p′
y)ysdysd

2rs,‖d
2p‖,

where~Q‖ is the wavevector transfer parallel to the surface defined as~Q‖ = ~p‖−~k‖. The in-
tegral overys can be performed assuming a little absorption so that the lower limit vanishes,
yielding

ψsc(~k,~r) = ψin(~k,~r)+ (6.122)

ρbψ0(~k‖)

π

∫ ∞

0

τ(py)ei~p·~r

2py(ky − p′y)

∫
e−i ~Q‖·~rs,‖e−iQyH(xs,zs)d2rs,‖d

2p‖,

whereQy is the wavevector transfer perpendicular to the surface defined asQy = py −
ky. This wave function can be inserted in the definition of the mutual coherence function
(equation (2.6)) to find the scattered mutual coherence function close to the sample surface.
After neglecting the interference between the incident beam and the reflected / refracted
beam and assuming the scattered mutual coherence function close to the sample surface
is homogeneous, the wavevector distribution of the scattered mutual coherence function
becomes (using equation (C.12)):

Wsc(~r1, ~p) =
1

p2
yAs

∫
Win(~r1, ~k‖)Sk(~p,~k)d2k‖, (6.123)

where

Sk(~p,~k) =
p2

yAs

4π2
RPO(~p,~k)

∫
e−i ~Q‖·~r‖E[e−iQy(H(xs+x,zs+z)−H(xs,zs))]d2r‖, (6.124)
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Figure 6.8: Phase-object enhancement coefficient as function of the reduced perpendicular
component of the incident wavevectorky/kc and scattered wavevectorpy/kc.

and

RPO(~p,~k) =

∣∣∣∣
py − p′y
ky − p′y

∣∣∣∣
2

, (6.125)

is thephase-object enhancement coefficient(see also figure 6.8).
For the specular part (py = −ky) it is equal to the reflectivity of the flat sample surface.

For |ky| → 0 and |py| > |ky| this factor goes to infinity, the total scattering however is
limited as the neutron source area for|ky | → 0 also goes to 0. The sample surface structure
factor is proportional to the two-dimensional Fourier transform of the expectation value of
the relative phase shift acquired by a neutron wave functionreflecting from the surface of
the sample. This is shown schematically in figure 6.7. The count rate in the detector can be
calculated by inserting this sample surface structure factor in equation (6.110).



84 Chapter 6. Reflectometry

6.6 Rough multi layers

Specular and diffuse scattering from rough multi layers canbe described in the first Born
approximation and in the distorted-wave Born approximation [53], [54], [55], [52]. As the
Born approximation can be regarded as the small scattering limit of the (correct) distorted-
wave Born approximation only this last approximation will be briefly discussed here.

The procedure for the distorted-wave Born approximation isessentially the same as for
the single interface. First an estimate of the wave functionin the sample and an appropri-
ate Green function must be established. Then equation (6.73) can be applied to find the
scattered-wave function. The final step is to use this scattered-wave function to create the
mutual coherence function at the detector position and calculate the count rate in the detec-
tor. As before, most authors split the scattered intensity up in a specular part and a diffuse
part. The result can be expressed in a form similar to equation (6.100), where the sample
correlation function can be calculated analytically or numerically from the model used.Ψk,
representing the incident beam, can be calculated using thematrix calculations or recursion
relations as given in section 6.2.1.Ψp, representing the Green function, can be calculated in
the same way, choosing either the time reversed solution (see section 6.4.3) or some other
solution for the smooth interfaces, fit to be used for the problem at hand.

An important complication is the fact that the roughness foreach interface in the multi-
layercanbe correlated to the roughness of any other interface in the multilayer. To be able
to calculate the effect of these types of correlations mostly some model for the correlation
between the roughnesses is assumed. Because of these aspects the results are strongly de-
pendent on the model used. In each specific case careful considerations must be made to
avoid the use of wrong models or calculation methods.



Chapter 7

Spin echo neutron reflectometry

7.1 Introduction

Rekveldt was first to consider combining the neutron spin echo technique and reflectome-
try [56]. In the same way as in small angle neutron scattering(chapter 5) it is possible to use
the precession of the neutron spin to code the angle of the neutron path through magnetic
flux density regions. It is assumed that the magnetic flux density changes in such a way that
within the (transversal) coherence length of the beam the magnetic flux density can be taken
constant. Hence, beam splitting effects are ignored and the2-shim neutron flux and 2-flip
neutron flux are sufficient to fully describe the neutron flux and measured polarization (see
section 4.7). Then, the influence of the magnetic flux densityis described by means of its
influence on the precession along the classical neutron paththrough the instrument.

To describe the neutron path in case of neutron reflectometryfour angles are important:
αk, the angle between the path of the incident neutron (wavevector ~k) and the sample sur-
face and the same for the not-scattered or transmitted neutron. βk, the angle the path of
the incident neutron makes with thexy-plane. αp the angle between the path of the off-
specular scattered neutron (wavevector~p) and the sample surface andβp the angle between
the path of the off-specular scattered neutron and thexy-plane. These angles are schemat-
ically shown in figure 7.1.θs is the angle between the path of the off-specular scattered
neutron and the path of the not-scattered neutron. Using these definitions, the wavevector
of the incident neutron is represented by

~k = k̄




cosαk cosβk

− sinαk

cosαk sinβk



 , (7.1)

and the wavevector of the scattered neutron by

~p = k̄




cosαp cosβp

sinαp

cosαp sinβp



 . (7.2)

The polarization precession angle acquired by a neutron traveling through parallelogram
shaped magnetic flux density regions is given by equations (5.1) and (5.2). The angle that
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αk
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Figure 7.1: Definition of angles in spin echo neutron reflection geometry.αk is the angle
between the path of the incident neutron (represented by vector ~k) and the sample surface
and the same for the not-scattered or transmitted neutron.βk is the angle the path of the
incident neutron makes with thexy-plane.αp the angle between the path of the off-specular
scattered neutron (vector~p) and the sample surface andβp is the angle between the path of
the off-specular scattered neutron and thexy-plane.θs is the angle between the path of the
off-specular scattered neutron and the path of the not-scattered neutron.

is coded by the precession angle (θI or θII ) is the angle the neutron path makes with the
x-axis in the plane of the parallelogram (see also figure 5.1).This angle can be adjusted by
rotating the magnetic flux density regions around the beam direction. In figure 7.2 this is
shown schematically. The angle of the neutron path can be coded to increase or decrease the
precession angle by adjusting the sign of the magnetic flux densityB1 and/orB2 (indicated
by the color of the magnetic flux density region) or the inclination anglesθ1 and/orθ2.

Figure 7.2 (A) shows the instrument if the coded angle beforethe sample isβk and after
the sample is eitherβk orβp depending on which neutron path is considered (the transmitted
or the scattered one respectively). Here, for a not-scattered or specular reflected neutron the
precession angle acquired in region I is exactly balanced bythe one in region II, producing
a perfect spin echo. Ifβp is different fromβk by scattering in thez-direction this exact
balance is canceled and a net precession angle remains. Thisenables the probing of the
sample surface structure in thez direction.

Figure 7.2 (B) shows the instrument if the coded angle beforethe sample isαk and after
the sample is eitherαk or αp (the transmitted or the scattered one respectively). For the
neutron path for which holdsαp = αk the precession angle acquired in region I is exactly
balanced by the one in region II, producing a perfect spin echo. This is the case for the
specular reflected neutron. Hence, it enables the possibility to separate (part of) the off-
specular and specular reflection.

Figure 7.2 (C) shows the instrument if the coded angle beforethe sample isαk and after
the sample is either−αk or −αp. For the neutron path for which holdsαp = −αk the
precession angle acquired in region I is exactly balanced bythe one in region II, producing
a perfect spin echo. This is the case for the not-scattered ortransmitted neutron. Ifαp is
different from−αk by specular reflection the spin echo is canceled and a net precession an-
gle remains, which for specular reflection is proportional to 2αk. Hence, if the off-specular
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(A) probing in-plane structures in thez-direction
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(B) separating off-specular and specular reflection
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(D) spin echo inelastic neutron scattering

Figure 7.2: Principle of precession angle coding of a spin echo neutron reflectometer. (A)
coding angleβk before the sample andβk or βp after the sample; (B) coding angleαk

before the sample andαk or αp after the sample; (C) coding angleαk before the sample
and−αk or−αp after the sample; (D) coding the wavelength before and afterthe sample.
See also figure 7.1. Region I has a magnetic flux density directed to the reader and region II
a direction from the reader.
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reflection can be neglected they-resolution can be enhanced or one can study wavy samples
without loss of resolution or intensity.

Figure 7.2 (D) shows the instrument if the precession angle is independent of the angle
of the path through the regions, but only depends on the wavelength of the neutrons. This
can be realized by making the inclination anglesθ1 andθ2 equal toπ/2. A perfect spin
echo is produced if the precession angle acquired in region Iis exactly balanced by the
one in region II. Hence, if the wavelength of the neutron is not changed in the reflection
or scattering process producing. If the wavelength is changed by a non-elastic scattering
process, a net precession angle remains, which is proportional to the change in wavelength.
This is the standard spin echo technique as introduced by Mezei in the 1970’s [32]. In the
following section the above instrument options A to C will bediscussed in more detail.

7.2 In-plane structures

The in-plane structure of the sample can be determined by means of off-specular reflection
as was discussed in the previous chapter. Then, the sample surface structure factor is deter-
mined from the measurement of the neutron count rate at the relevant detector positions. As
all direct scattering techniques this is done in momentum transfer-space orQ-space. Using
the spin echo technique this is converted to real-space by anappropriate Fourier transform
using the precession angle coding of the momentum transfer.This was first experimentally
tested by Felcher et al. [57] in 2002 and repeated in 2003 [58].

As only elastic scattering is addressed here, the momentum transfer is completely de-
termined by the scattering angleθs, or the difference betweenαk andαp and betweenβk

andβp. These are the angles which can be encoded by an appropriate choice of the align-
ment of the precession regions I and II. It is assumed that thecoherence matrix can be split
up in the mutual coherence function of the wave function whenall magnetic flux densities
were turned off,Γ0(~r1, ~r2, τ) and the reduced coherence matrixγ̂B(~r1, ~r2, τ) as defined in
section 4.2:

Γ̂(~r1, ~r2, τ) = Γ0(~r1, ~r2, τ)γ̂B(~r1, ~r2, τ). (7.3)

The propagation of the mutual coherence function,Γ0 is discussed in the previous chapter
and given by equation (6.94). Again, if the sample dimensions can not be neglected the
sample should be split up in several smaller samples (each much larger than the coherence
length) and the resulting mutual coherence function is the (incoherent) sum of all separate
contributions. Under the conditions as discussed in the introduction of this chapter the
propagation of the reduced coherence matrix is given by

γ̂B(~r1, ~r2, τ) = D̂(~r2, ~r′2)γ̂B(~r′1,
~r′2, τ)D̂(~r1, ~r′1)

†, (7.4)

the same form as equations (4.23) and (4.25), where the matricesD̂ are defined in equa-
tion (4.28) and describe the magnetic flux density interaction with the neutron wave func-
tion traveling from~r′1 or ~r′2 on the neutron source to~r1 or ~r2 on the detector via the sample
surface. For a completely unpolarized neutron source the matrix γ̂B(~r′1,

~r′2, τ) reduces to
Î/2. As in section 5.1 the device matrix between polarizer and flipper for the spin echo
instrument is given by:

Ê(~r, ~r′) = R̂(~r′, ~r)†T̂z(φII(~p))T̂z(φI(~k))R̂(~r′, ~r), (7.5)
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whereR̂(~r′, ~r) is the device matrix of the rotator before region I andR̂(~r′, ~r)† the same for
the rotator after region II and

φI(~k) = −cλ̄B1L1(1− βk tan θ1) (7.6)

and
φII(~p) = −cλ̄B2L2(1− βp tan θ2). (7.7)

If the sample scatters non-magnetic,θ1 = θ2 andB1L1 = −B2L2 the device matrix for
region I, the sample and region II is justT̂z(~lse · ~qse), where~qse = ~p− ~k is the wavevector
transfer at the sample position, the direction of~lse is the coding direction (here~ez) and
lse = cλ̄2B1L1 tan θ1/2π is called thespin echo length. The polarizing factor of̂E(~r, ~r′)
is:

PE(~r, ~r′) = (1− P 2
R(~r′, ~r)) cos

{
~lse · ~qse

}
+ P 2

R(~r′, ~r), (7.8)

wherePR is the polarizing factor of̂R(~r′, ~r). For a perfect spin echo instrument the fac-
tor before the cosine must be maximal and the other term minimal, hencePR = 0. The
complete device matrix is found by including the polarizer,flipper and analyser:

D̂(~r, ~r′) = D̂A(~r, ~r′)F̂ (~r, ~r′)Ê(~r, ~r′)D̂P (~r, ~r′), (7.9)

whereD̂P corresponds to the device matrix of the polarizer,D̂A of the analyser (see equa-
tion (4.37)) andF̂ of the flipper just before the analyser (see also section 4.7). In the
following it is assumed that these device matrices are constant. HenceD̂ only depends on
~p− ~k. The detector count rate can be found by integrating equation (4.9) over the detector
area:

Id = 2vp

∫

Ad

Tr(Γ̂(~rd, ~rd, 0))d2rd, (7.10)

whereAd is the detector area perpendicular to~vp and assumed large enough to capture all
scattered or reflected neutrons. Inserting equations (7.3), (7.4), (7.9), (6.94) and (C.28) this
yields for a completely homogeneous, incoherent and unpolarized source with areaA0:

Id =

∫

Ad

∫

A0

J0

4πr2dsr
2
s0

Sk(~p,~k)Ωd(~p− ~k)d2r′d2rd, (7.11)

where

Ωd(~p− ~k) =
1

2
Tr
(
D̂(~p− ~k)D̂(~p− ~k)†

)
(7.12)

and~k = k̄(~rs0 − ~r′)/rs0, ~p = k̄(~rd − ~rs0)/rds and~r′ is the source position. Again, if the
sample dimensions can not be neglected the sample should be split up in several smaller
parts (each much larger than the coherence length) and the resulting detector count rate is
the sum of all separate contributions, yielding:

Id =

∫

Ad

∫

A0

∫

As

J0

4πr2dsr
2
s0As

Sk(~p,~k)Ωd(~p− ~k)d2rsd
2r′d2rd. (7.13)

The 2-shim count rate can be determined by replacingΩd in the above equation byTPTA/4
whereTP andTA are the transmissions of polarizer and analyser respectively:

Is =
TPTA

4

∫

Ad

∫

A0

∫

As

J0

4πr2dsr
2
s0As

Sk(~p,~k)d2rsd
2r′d2rd. (7.14)
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The 2-flip count rate is found by replacingΩd by TPTAPPPAPE(~p− ~k)/4, yielding:

If =
TPTAPPPA

4

∫

Ad

∫

A0

∫

As

J0

4πr2dsr
2
s0As

Sk(~p,~k)PE(~p− ~k)d2rsd
2r′d2rd. (7.15)

The integral over the detector area can be transformed to an integral overpy andpz and the
integral over the source area can be transformed to an integral overky andkz :

If =
TPTAPPPA

4

J0

As4πk̄4

∫

As

∫

ky

∫

kz

∫

py

∫

pz

Sk(~p,~k)PE(~p− ~k)dpzdpydkzdkyd
2rs.

(7.16)
This integral can be evaluated by realizing that in the case consideredPE only depends on
the differencepz − kz . Further, the sample surface structure factor only dependson ~p − ~k
andky andpy. If the detector is wide enough the integral overpz goes from−∞ to +∞
and can be replaced by an integral overQz = pz − kz and the same range:

If =
TPTAPPPA

4

J0

As4πk̄4

∫

As

∫

kz

dkz

∫

Qz

{∫

py

∫

ky

Sk(~p,~k)dkydpy

}
PE(Qz)dQzd

2rs,

(7.17)
Furthermore, if it is assumed that the distancesrs0 andrds are large compared to the sample,
source and detector dimensions, then the argument of the integral over the sample surface
is constant and the above equation is reduced to:

If =
TPTAPPPA

4

J0

4πk̄4

∫

kz

dkz

∫

Qz

{∫

py

∫

ky

Sk(~p,~k)dkydpy

}
PE(Qz)dQz, (7.18)

and the measured polarization becomes:

Pm = PPPA

∫
Qz

{∫
py

∫
ky
Sk(~p,~k)dkydpy

}
PE(Qz)dQz

∫
Qz

{∫
py

∫
ky
Sk(~p,~k)dkydpy

}
dQz

. (7.19)

The factorPE(Qz) is given by equation (7.8). In the ideal spin echo instrumentPR = 0 and
the integral overQz represents a cosine transform (or the real part of a Fourier transform)
of the sample surface structure factor, hence the above equation becomes:

Pm = PPPA
Gr(lse)

Gr(0)
, (7.20)

where

Gr(lse) = ℜ
(∫

Qz

{∫

py

∫

ky

Sk(~p,~k)dkydpy

}
eilseQzdQz

)
, (7.21)

comparable to equation (5.27).Gr(r) is a one dimensional sample correlation function.
For standard neutron reflection geometry (see figure 6.1) therange of integration ofky is
determined by positionH and the widthWy of the entrance diaphragm and the range of
integration ofpy by positionHd and the widthDy of the diaphragm before the detector. In
general these ranges are quite small and the integration over ky andpy can be interpreted as
a resolution effect.
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One should realize that the validity of this last equation depends on several conditions,
which were mentioned during its derivation. The most important ones are the quality of
the spin echo instrument, which determinesPE(Qz) and the small size of the sample com-
pared to the distance between sample and source and sample and detector. In (spin echo)
small angle neutrons scattering instruments this condition is almost always met. For neu-
tron reflectometers large sample sizes are more common. In case were the sample size is
too large deviations might occur and one should use equation(7.13) instead. Another im-
portant condition is that the sample correlation length that is probed (lse) is smaller than√
rds/k̄. Otherwise the equations used to calculate the scattered coherence function should

be calculated using its definition and equation (6.89) for the scattered-wave functions, with-
out neglecting the differences between the two vectors~p. Finally, the magnetic flux density
should be homogeneous over the probed length, otherwise theway the coherence matrix
propagates is not accurately described by equation (7.4). In that case no analytical solution
has been found for the propagation of the mutual coherence matrix or (which is the same)
polarization of the neutron beam.

If the sample surface structure factor can be calculated by means of the phase-object
approximation (see section 6.5) the one dimensional samplecorrelation function becomes:

Gr(lse) =

∫

py

∫

ky

p2
yAs

2π
RPO(~p,~k)G′

r(lse)dkydpy, (7.22)

where

G′
r(lse) = ℜ

(∫
E[e−iQy(H(xs+x,zs+lse)−H(xs,zs))]dx

)
(7.23)

and it was assumed thatQx ≈ 0. Ignoring resolution effects the measured polarization
reduces to:

Pm = PPPA
G′

r(lse)

G′
r(0)

, (7.24)

Plomp et al. [59] used this formula to describe his measurements on a grating (the same as
of Felcher et al. and Major et al. [57], [58]), explaining both theirs and his results.

7.3 Separating off-specular and specular reflection

It was first realized by Pynn et al. [60] that the specular reflected part could be separated
from the off-specular part by changing the coded angle toαk and−αp as shown in figure 7.2
(B). Then it is possible to separate the neutrons that are reflected in the specular direction
(αp = −αk) from the neutrons that are reflected or scattered in the diffuse or off-specular
direction. If the sample scatters non-magnetic,θ1 = −θ2 andB1L1 = −B2L2 the device
matrix for region I, the sample and region II is justT̂z(lse(py +ky)), wherepy andky are the
components perpendicular to the sample surface of the wavevector of the incident respec-
tively the scattered-wave function. Againlse = cλ̄2B1L1 tan θ1/2π is the spin echo length.
Equations (7.14) and (7.16) are still valid because up to this point in the derivation in the
previous section no assumptions were made for the coding direction. Now equation (7.16)
can be evaluated by realizing that in the case consideredPE only depends onky + py:

If =
TPTAPPPA

4

J0

As4πk̄4

∫

As

∫

ky

∫

py

∫

kz

∫

pz

Sk(~p,~k)dpzdkzPE(py + ky)dpydkyd
2rs.

(7.25)
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If the sample size is small compared to detector-sample and source-sample distances this
becomes:

If =
TPTAPPPA

4

J0

4πk̄4

∫

ky

∫

py

∫

kz

∫

pz

Sk(~p,~k)dpzdkzPE(py + ky)dpydky . (7.26)

Assume as before (equation (6.42)), the sample surface structure factor can be split in a
specular and diffuse component, which are given by equations (6.112) and (6.113), then the
specular part becomes:

Is
f =

TPTAPPPA

4

J0ρ
2
bAs

4πk̄4

∫

ky

∫

py

∫

kz

∫

pz

Ss(~p,~k)dpzdkzdpydky (7.27)

where it was used that for the specular partpy = −ky. Note that this part does not depend
on the spin-echo length. The diffuse part becomes:

Id
f =

TPTAPPPA

4

J0ρ
2
bAs

4πk̄4

∫

ky

∫

py

∫

kz

∫

pz

Sd(~p,~k)dpzdkzPE(py + ky)dpydky . (7.28)

Hence, if now the spin-echo length is varied, the specular part is constant and the diffuse
part changes according to the above equation. This enables the determination of the specular
and diffuse part separately.

As an example, if the diffuse part varies slowly and thepy andky range is limited, the
diffuse part can be taken constant and the above equation forthe diffuse part becomes:

Id
f ≈ Z

TPTAPPPA

4

J0ρ
2
bAs

4πk̄4

∫

kz

∫

pz

Sd(~p,~k)dpzdkz , (7.29)

where

Z =

∫ kmax

kmin

∫ pmax

pmin

PE(py + ky)dpydky, (7.30)

is determined by the instrument properties only. IfPE is given by equation (7.8) and
PR(~r′, ~r) is taken constant, this becomes:

Z = P 2
R∆ky∆py +

1− P 2
R

l2se

4 sin

(
lse

∆ky

2

)
sin

(
lse

∆py

2

)
cos
(
lse(k̄y + p̄y)

)
, (7.31)

where∆ky = kmax − kmin, ∆py = pmax − pmin, k̄y = (kmax + kmin)/2 and p̄y =
(pmax+pmin)/2. Hence, if the spin-echo length is0 thenZ = 1 and when it is large enough
(lse ≫ ∆ky ,∆py),Z reduces to the first term, which for an ideal spin echo instrument is0.
Hence, the diffuse part averages to zero and the true specular part remains.

7.4 Enhanced resolution or wavy samples

Rekveldt [16] showed that by changing the coded angle toαk andαp as shown in figure 7.2
(C) it is possible to increase the resolution of the measurement of the specular reflectivity
without reducing the intensity of the neutron beam. If the sample scatters non-magnetic,
θ1 = θ2 andB1L1 = −B2L2 the device matrix for region I, the sample and region II is
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just T̂z(lse(py − ky)), wherepy andky are the components perpendicular to the sample
surface of the wavevector of the incident respectively the scattered-wave function. Again
lse = cλ̄2B1L1 tan θ1/2π is the spin echo length. Equations (7.14) and (7.16) are still valid
because up to this point in the derivation in the previous section no assumptions were made
for the coding direction. Now equation (7.16) can be evaluated by realizing that in the case
considered herePE only depends onpy − ky. Both the specular and the diffuse part can be
accounted for.

Further, if the diffuse part is ignored this method can be used to increase the resolution
without a loss in intensity. For the specular part (py = −ky) equation (6.104) is used:

S
(0,0)
k (~p,~k) = R(py)p

2
yAsδ

(2)(~q‖), (7.32)

which inserted in equation (7.15) yields:

If =
TPTAPPPA

4

∫

Ad

∫

A0

∫

As

J0

4πr2dsr
2
s0

R(ky)k2
yδ

(2)(~p‖ − ~k‖)PE(2ky)d2rsd
2r′d2rd,

(7.33)
where~k = k̄(~rs − ~r′)/rs, ~p = k̄(~rd − ~rs)/rds and~r′ is the source position. If, again the
sample size can be neglected compared to the sample-source distance, this reduces to:

If =
TPTAPPPA

4

J0As

4πr2dsr
2
s0

∫

Ad

∫

A0

R(ky)k2
yδ

(2)(~p‖ − ~k‖)PE(2ky)d2r′d2rd. (7.34)

The two-dimensional Dirac-delta functionδ(2)(~p‖ − ~k‖) represents that only specular re-
flection is taken into account. Therefor it is possible to take both a large detector area and a
large source area (entrance diaphragm). The above equationthen reduces further to:

If =
TPTAPPPA

4

J0As∆kz

4πk̄4

∫ ∞

0

R(ky)k2
yPE(2ky)dky , (7.35)

where∆kz is determined by the width of the entrance diaphragm (k̄Wz/rs) or the width
of the detector diaphragm (k̄Wd/rs) or both. The functionPE(2ky) in the ideal case is
cos(2kylse) so that the above formula represents the real part of the Fourier transform of
R(ky)k2

y:

If (lse) =
TPTAPPPA

4

J0As∆kz

4πk̄4

∫ ∞

0

R(ky)k2
y cos(2lseky)dky, (7.36)

This Fourier transform can be back transformed to yieldR(q):

R(q) =
1

q2
16k̄4

TPTAPPPAJ0As∆kz

∫ ∞

0

If (lse) cos(2lseq)dlse, (7.37)

Hence, in principle it is possible to determine the reflectivity of the sample with an com-
pletely uncollimated beam.

However, practically a problem arises due to the propertiesof the back transform of the
Fourier transformation. The spectrumIf (lse) is determined with a finite accuracy due to
counting statistics. The law of error propagation for Fourier transforms roughly distributes
the counting statistics evenly over the transformed spectrum. If the reflectivity changes from
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1 to 10−3 in the interesting range this forces the statics for the whole measured spectrum
to be better than10−3, which is rather impossible. This problem becomes even worse for
larger reflectivity ranges. The solution for this problem isto limit the reflectivity range to be
measured. This can be accomplished by either limiting the source area or the detector area.
Then, the limits of the Fourier transform in the above equation do not extent from0 to∞
but fromq−∆q to q+ ∆q, where bothq and∆q are determined by instrument parameters.
For the geometry presented in chapter 6 and a source limitingsituationq = k̄H/rs and
∆q = k̄Wy/2rs, while for a detector limiting situationq = k̄Hd/rds and∆q = k̄Wd/rds:

If =
TPTAPPPA

4

J0As∆kz

4πk̄4

∫ q+∆q

q−∆q

R(ky)k2
yPE(2ky)dky , (7.38)

which can be interpreted as the (real part) of the Fourier transform of R̃(ky)k2
y, where

R̃(ky) = R(ky)Res(ky) whereRes(ky) is a resolution function, in this caseRes(ky) =
u(ky + q + ∆q) − u(ky − q −∆q) andu(x) is the Heaviside step function:u(x) = 1 if
x ≥ 0 andu(x) = 0 if x < 0. If the sample is not perfectly flat but has a certain amount
of waviness this can be translated into an adaptation of the resolution function. Further if
the source is not exactly homogeneous or incoherent this results in a different resolution
function also. The combination of all possible effects tends to Gaussian shaped resolution
function.

In case a multi-detector or a position sensitive detector isused to determine the count
rateIf the above equation changes to:

If = ΣiI
(i)
f , (7.39)

where

I
(i)
f =

TPTAPPPA

4

J0As∆kz

4πk̄4

∫ qi+1

qi

R(ky)k2
yPE(2ky)dky (7.40)

and the limitsqi are determined by the corresponding limits of the channel,i in which the
counts are collected. For each channel the back Fourier transform can be done, resulting in:

R(i)(q) =
1

q2
16k̄4

TPTAPPPAJ0As∆kz

∫ ∞

0

I
(i)
f (lse) cos(2lseq)dlse (7.41)

and all channels added together yield [16]:

R(q) = ΣiR
(i)(q). (7.42)

The advantage of this method is that in each channel the detector count rate due to low
reflectivity is not blurred by the statistics of counts due tohigh reflectivity. Note that this
method is independent of the actual valuesqi and the scaling factor before the integral also
does not depend on eitheri or qi. Hence, all detector counts are used so that no intensity
is lost and the division of the detector area in channels can be optimized for each experi-
ment, depending onR(q), the waviness of the sample and the available neutron counting
statistics. A limitation of this method is that it should be possible to perform the back
Fourier transform. Hence one should measure toward large spin-echo lengths (lse) for the
enhanced resolution and one might use an artificial filter to limit or reduce oscillations after
the transform [61]. The wavevector transfer resolution will be of the order ofπ/lse,max .



Chapter 8

Concluding remarks

It is possible to use coherence theory to describe propagation of neutrons through neutron
scattering instruments. Coherence theory describes the propagation of the ensemble average
of the neutron wave function. Coherence theory as adopted here, only considers neutron
wave functions, having approximately an equal amount of total energy, denoted byquasi-
monochromaticwave functions. This is due to the dispersion relation of matter-waves,
and hence the interference between non-monochromatic wavefunctions, can in general be
ignored.

One advantage using coherence theory over standard scattering theoretical considera-
tions is the incorporation of instrumental and source effects. By means of coherence theory
it is possible to accurately calculate scattered neutron intensities, given the full instrumen-
tal details. It was shown that in all scattering cases it is possible to retrieve the results as
published in literature by introducing appropriate approximations. The introduced approx-
imations are documented so one can asses when a particular approximation is valid and
when it is not. Further it was shown that also neutron polarization effects can be described
by using the coherence matrix approach. This enables understanding of beam splitting ef-
fects due to magnetic flux density variations and indicates when these effects will become
really measurable in real neutrons scattering devices.

Another advantage of coherence theory is that in principle no conversion tomomentum
space(or q-space) is needed. All scattering phenomena can be described in real space.
The Fourier transform to go from real space to momentum spaceand vice versa is con-
tained in the propagation formula for the mutual coherence function or coherence matrix.
This formula describes the propagation of the mutual coherence function through free space
(vacuum or small interaction potential). It must be emphasized that scattering of neutrons is
not incorporated in the coherence theory. It only deals withpropagation of neutrons before
interaction with an scattering object and after it.

Interaction with the object itself is described by means of the time-dependent Schrödinger
equation for a (polarized) neutron wave function. Here, coherence lengths and time do
not play any role because these are related to coherence properties only, not to the wave
function. Hence, one should realize that a neutron wave function ’scatters’ from the whole
of the interaction potential, not just from the part of the interaction potential covered by
the coherence lengths (coherence volume) and time of the neutron ensemble average (or
neutron beam). Although this seems obvious at first, it can become confusing when trying
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to understand the scattering of neutrons in real space.
In chapters 5 and 7 some aspects of the potential of neutron spin coding techniques are

described. In these examples always the neutron spin is firstrotated to some angle and then
rotated backwards toward its starting position. This is whyit is calledspin-echotechnique.
Mezei was the first to apply this to the coding of the energy transfer of the neutron in a scat-
tering process [32]. However, other applications are possible which are not to be ignored.
In these applications the spin coding technique is used to label each neutron with a special
property of the neutron. An example is the coding of the neutrons wavelength in neutron
Larmor precession transmission experiments [62]. Anotherexample is the coding of a spe-
cific component of the neutrons wavevector (for instance perpendicular to a Bragg-plane) in
neutron diffraction experiments [63]. This enables high-resolution neutron diffraction ex-
periments, yielding accurate information on crystal lattice spacings, comparable to X-rays.
Hence, spin-echo coding techniques are expanding neutron scattering applications to limits
never thought possible with conventional neutron scattering techniques.
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Appendix A

Rotation matrices

A rotation matrix is a multiplication of rotation or streaming matrices only and can be
described with three real functions:

Ĥ =
1√
2

( √
1 + Peiα i

√
1− Peiβ

i
√

1− Pe−iβ
√

1 + Pe−iα

)
, (A.1)

where|P | ≤ 1 andα, β andP are all functions of~r and~r′. P is called thepolarizing factor
of the matrix. This matrix can be interpreted as an effectiverotation of the polarization
vector over an angle2θ around a normal~n as shown in figure A.1, for which holds:

Ĥ = Î cos θ − i (nxσ̂x + nyσ̂y + nzσ̂z) sin θ, (A.2)

or because(nxσ̂x + nyσ̂y + nzσ̂z)
2

= Î:

Ĥ = e−iθ (nxσ̂x + nyσ̂y + nzσ̂z). (A.3)

α, β andP can be expressed in terms ofθ and~n:

P = 1− 2(1− n2
z) sin2 θ, (A.4)

tanα = −nz tan θ , (A.5)

tanβ = −ny/nx , (A.6)

or reversed:

nx sin θ = −
√

1− P
2

cosβ, (A.7)

ny sin θ =

√
1− P

2
sinβ, (A.8)

nz sin θ = −
√

1 + P

2
sinα. (A.9)

A typical property of rotation matrices is that the product of two rotation matrices is another
rotation matrix. Further properties are:

ĤĤ† = Î , (A.10)
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det Ĥ = 1, (A.11)

Tr(σ̂zĤσ̂zĤ
†) = 2P. (A.12)

Notice further that any rotation matrix can be transformed in a sum of a matrix̂Tz andF̂z :

Ĥ =

√
1 + P

2
T̂z(2α) +

√
1− P

2
F̂z(2β), (A.13)

where

F̂z(τ) =

(
0 ieiτ/2

ie−iτ/2 0

)
(A.14)

is aflipping matrix. This matrix can be interpreted as an effective rotation of the polarization
vector over an angleπ along a normal~n in the (x, y) plane as shown in figure A.2. Some
special matrices and their properties are shown below:

F̂z(β)T̂z(α) = F̂z(β − α), (A.15)

T̂z(β)F̂z(α) = F̂z(β + α), (A.16)

F̂z(β)F̂z(α) = −T̂z(β − α), (A.17)

T̂z(β)T̂z(α) = T̂z(β + α), (A.18)

F̂z(α)σ̂y = −σ̂yF̂z(−α), (A.19)

T̂z(α)σ̂y = σ̂y T̂z(−α) (A.20)

and

Tr(σ̂y T̂z(α)) = 0, (A.21)

Tr(F̂z(α)) = 0, (A.22)

Tr(T̂z(α)) = 2 cos
α

2
. (A.23)
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~P1
~P0

~n

2θ

Figure A.1: Effect of rotation or streaming matrix on rotation of polarization vector from
~P0 to ~P1.

~P1

~P0

~P ′
1

−τ
~P ′
0

z

x

y

~n

Figure A.2: Effect of flipping matrix on rotation of polarization vector from~P0 to ~P1 if the
polarization is parallel to thez-axis and from~P ′

0 to ~P ′
1 otherwise.
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Appendix B

Rough surfaces

Roughness of surfaces can be described in several ways. Here, it is important to model
the optical potential at the interface as changes in this potential causes neutrons to scat-
ter. Let the height of the surface above thexz-plane be given by a functionH(x, z) (see
figure B.1).The height-height correlation function is given by:

C(x, z) =
1

As

∫

As

H(xs, zs)H(xs + x, zs + z)dxsdzs, (B.1)

where the integration is over the sample surface area,As. In the following it is assumed that
H(x, z) has a Gaussian random distribution. The first moment (or average) ofH(x, z) is 0.
The second moment (or variance) ofH(x, z) is defined as:σ2 = C(0, 0). The expectation
value ofeiqH(x,z), known as thecharacteristic functionof H(x, z), is given by:

E[eiqH(x,z)] = e−q2σ2/2. (B.2)

Further it is assumed thatH(x1, z1) −H(x2, z2) has a Gaussian random distribution with
zero mean too and its variance only depends onx1 − x2 andz2 − z1:

g(x, z) =
〈
[H(xs, zs)−H(xs + x, zs + z)]2

〉

As

, (B.3)

y

0

x, z

H(x1, z1)

H(x2, z2)

Figure B.1: Height distribution of a rough surface.H(x, z) is the height above thexz-plane.
The average ofH(x, z) is 0.
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where the average is taken over the whole sample area. Note thatg(x, z) can be reduced to:

g(x, z) = 2(C(0, 0)− C(x, z)). (B.4)

Note that the expectation value ofeiq(H(xs,zs)−H(xs+x,zs+z)) is given by:

E[eiq(H(xs,zs)−H(xs+x,zs+z))] = e−q2g(x,z)/2. (B.5)

For a discussion of possible height-height correlation functions see for instance [40] and
[64].

The optical potential of the sample is modeled as:

V (x, y, z) = u(y + d)u(H(x, z)− y)V0, (B.6)

whereV0 is the optical potential of the (homogeneous) sample material (see also sec-
tion 3.3),d is the thickness of the sample in they-direction andu(y) is the Heaviside step
function. Note that it is assumed that the interface aty = −d is completely flat.



Appendix C

Scattering at surfaces

The scattering at a smooth surface results in a change of theincident mutual coherence
function into thescatteredmutual coherence function at the scattering position. In gen-
eral a mutual coherence function describes the correlations between two wave functions
propagating through free space according to its definition as given by equation (2.6). To
find out what happens in the scattering process the Schrödinger equation must be solved.
Depending on the problem at hand (the optical potential distribution and the scattering ge-
ometry) sometimes a general solution can be derived from this wave equation, coupling the
scattered-wave function to the incident-wave function. Inthe case considered here (specular
and off-specular reflection at a smooth sample surface) under certain conditions the general
solution can be expressed in terms of wavevector distributions. Here, the incident-wave
function is assumed to be a distribution over plane wave components and each component
is scattered in its own special way. After scattering all components are added, forming the
scattered-wave function. Hence, in the following the relation between a mutual coherence
function to the desired components of the wave function is discussed first. Then, the inci-
dent mutual coherence function is transformed to the scattered one by applying the solution
of the Schrödinger equation to each of the components and adding them. Finally, this is
applied to find the scattered mutual coherence function at the detector position.

C.1 Wavevector distribution of mutual coherence function

Let Ψ(~r, t) denote a neutron wave function characterizing the field at point ~r at timet. The
neutron wave functionΨ(~r, t) is constructed by its constituting monochromatic plane-wave
components (see also section 2.1):

Ψ(~r, t) = e−iωkt

∫
ψ(~k,~r)d3k, (C.1)

where~k is the wavevector,ωk = h̄k2/2m andm the neutron mass. If further it is assumed
that the beam is directed to positive value’s ofx andz only, the wavevector~k = ~k‖ + ky~ey,

whereky = ~k ·~ey so thatky = −
√
k̄2 − k2

‖. The negative sign denotes that the plane wave

is traveling in the−y direction. The plane-wave components can be described by:

ψ(~k,~r) = ψ0(~k‖)e
i~k·~r. (C.2)
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Hence, the neutron wave function can be described by:

Ψ(~r, t) = e−iωkt

∫
ei~k·~rψ0(~k‖)d

2k‖. (C.3)

Note that the mutual coherence function can be described by the above variables using its
definition (2.6):

Γ(~r1, ~r2, τ) = e−iωkτ

∫ ∫ 〈
ψ(~k1, ~r1)

∗ψ(~k2, ~r2)
〉
d2k1,‖d

2k2,‖, (C.4)

which can be reduced to:

Γ(~r1, ~r2, τ) = e−iωkτ

∫ ∫ 〈
ψ0(~k1,‖)

∗ψ0(~k2,‖)
〉
ei~k2·~r2−i~k1·~r1d2k1,‖d

2k2,‖. (C.5)

From this equation it follows by inverse Fourier transformation:
〈
ψ0(~k1,‖)

∗ψ0(~k2,‖)
〉

=
1

16π4

∫ ∫
ei~k1·~r1−i~k2·~r2Γ(~r1, ~r2, 0)d2r1,‖d

2r2,‖. (C.6)

If the mutual coherence function is homogeneous (only depending on~r2 − ~r1), then this
reduces to:

〈
ψ0(~k1,‖)

∗ψ0(~k2,‖)
〉

=
δ(2)(~k1,‖ − ~k2,‖)

4π2
W (~r1, ~k2,‖), (C.7)

where

W (~r1, ~k‖) =

∫
e−i~k‖·~r‖Γ(~r1, ~r1 + ~r‖, 0)d2r‖, (C.8)

is the wavevector distribution.

C.2 Scattering at a smooth sample surface

The incident-wave function at the sample surface can be represented by:

Ψin(~r, t) = e−iωkt

∫
ei~k·~rψ0(~k‖)d

2k‖. (C.9)

and following the derivation given in section 6.2.1 the scattered-wave function in the far-
zone can be expressed as:

Ψ(0)
sc (~r, t) = e−iωkt

∫
ρ(ky)e−2ikyyei~k·~rψ0(~k‖)d

2k‖, (C.10)

whereky = −
√
k2 − k2

‖. By taking~p‖ = ~k‖ andpy = −ky this equation can be rewritten
as:

Ψ(0)
sc (~r, t) = e−iωkt

∫
ρ(py)ei~p·~rψ0(~p‖)d

2p‖. (C.11)

If it is assumed thatclose to the sample surfaceboth the incident mutual coherence function
and the scattered one are homogeneous, the wavevector distribution of the scattered mutual
coherence function is defined by:

Wsc(~r1, ~p‖) =

∫
e−i~p‖·~r‖Γsc(~r1, ~r1 + ~r‖, 0)d2r‖. (C.12)
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Using the definition of the mutual coherence function and after inserting equations (C.10)
and (C.7) this becomes:

W (0,0)
sc (~r1, ~p‖) = R(py)Win(~r1, ~p‖), (C.13)

whereR(py) = ρ(py)∗ρ(py). The mutual coherence function can be determined by a
Fourier transform of equation (C.13):

Γ(0,0)
sc (~r1, ~r1 + ~r‖, 0) =

1

4π2

∫
ei~p‖·~r‖R(py)Win(~r1, ~p‖)d

2p‖. (C.14)

InsertingWin this becomes at the sample position:

Γ(0,0)
sc (~rs, ~rs + ~r‖, τ) =

1

4π2

∫ ∫
ei~p‖·(~r‖−~s‖)Γin(~rs, ~rs +~s‖, τ)R(py)d2p‖d

2s‖. (C.15)

C.3 Mutual coherence function at detector position

Equation (6.10) can be used to calculate the propagation of the mutual coherence function
to the detector:

Γsc(~rd, ~rd, 0) =

∫

y=0

cos2 φ1

r2d1λ̄
2

∫

y=0

e−i~p·~rΓsc(~r1, ~r1 + ~r, 0)d2rd2r1, (C.16)

where~p = k̄(~rd−~r1)/rd1. The inner-integral of this formula is the Fourier transform of the
mutual coherence function at position~r1 on the sample plane, the same as equation (C.12),
so that:

Γsc(~rd, ~rd, 0) =

∫

y=0

cos2 φ1

r2d1λ̄
2
Wsc(~r1, ~p)d

2r1. (C.17)

Hence, the mutual coherence function at the detector position is proportional to the sam-
ple average of the scattered wavevector distribution, whenit is assumed that at the sample
position the mutual coherence function of incident and scattered wave are homogeneous
and the sample correlation lengths are not too large. If these conditions are not fulfilled a
more elaborate derivation is needed, based directly on the derivation of the propagation of
the mutual coherence function as given by Mandel [1]. According to equations (C.10) and
(C.5) the scattered mutual coherence function is given by:

Γ(0,0)
sc (~r1, ~r2, τ) = e−iωkτ× (C.18)

∫ ∫
ρ(p1,y)

∗ρ(p2,y)
〈
ψ0(~p1,‖)

∗ψ0(~p2,‖)
〉
ei~p2·~r2−i~p1·~r1d2p1,‖d

2p2,‖.

Inserting equation (C.6) yields:

Γ(0,0)
sc (~r1, ~r2, τ) =

∫ ∫
Ξ(~r′1, ~r′2)Γin(~r′1, ~r′2, τ)d

2r′1,‖d
2r′2,‖, (C.19)

where

Ξ(~r′1, ~r′2) =

∫ ∫
e−i~p1·~r1+i~p2·~r2

ρ(p1,y)∗ρ(p2,y)

16π4
ei~p1·~r′

1−i~p2·~r′
2d2p1,‖d

2p2,‖ (C.20)
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To solve this integral equation theWeyl representation of a diverging spherical waveis
used [1]. This transforms an integral over~k‖ into a Green function:

∫ ∞

−∞

ei~k·~r

ky
d2k‖ = 2π

eik̄r

ir
. (C.21)

If both sides of this formula are differentiated with respect to y and interchanging the order
of differentiation and integration this becomes:

∫ ∞

−∞

ei~k·~rd2k‖ = 2π
∂

∂y

[
eik̄r

ir

]
. (C.22)

In the far-zone the differential at the right-hand side becomes:

∂

∂y

[
eik̄r

ir

]
= k̄ cos θ

eik̄r

r
, (C.23)

wherecos θ = ~ey · ~r/r and hence

∫ ∞

−∞

ei~k·~rd2k‖ = 2πk̄ cos θ
eik̄r

r
. (C.24)

Inserting this result in equation (C.20) and assuming thatρ(p1,y) andρ(p2,y) are constant,
yields:

Ξ(~r′1, ~r′2) = ρ(p1,y)∗ρ(p2,y) cos θ1 cos θ2
eik̄(R2−R1)

R1R2λ̄2
, (C.25)

whereRi =
∣∣∣~r′i − ~ri

∣∣∣ andcos θi = ~ey · (~r′i − ~ri)/Ri and~pi is a wavevector with length

k̄ and a direction that corresponds to the direction of~r′i − ~ri . Note that for the derivation
of this formula it was used that the incident mutual coherence function was known on the
sample plane. Instead of using the sample plane any plane will do as long as one takes care
of the correct values forρ(p1,y) andρ(p2,y).

C.4 Wavevector distribution for an incoherent source

Equation (2.31) and equation (2.36) can be used to calculatethe incident mutual coherence
function for a completely homogeneous and incoherent source with areaA0:

Γin(~r1, ~r1 + ~r, 0) =
J0

2vp4πr21

∫

A0

eik̄~r·(~r1−~r′)/r1d2r′, (C.26)

so that

Win(~r1, ~k‖) =
J0

2vp4πr21

∫

A0

∫
ei~r‖·((~r1−~r′)k̄/r1−~k‖)d2r‖d

2r′, (C.27)

which can be reduced to:

Win(~r1, ~k‖) =
J0π

2vpr21

∫

A0

δ(2)

(
k̄
~r1,‖ − ~r′‖

r1
− ~k‖

)
d2r′. (C.28)



Appendix D

Scattering at rough or structured
sample surfaces

Following the derivation given in section 6.4 the scattered-wave function can be expressed
as (equation (6.73)):

ψsc(~k,~r) = ψ(0)
sc (~k,~r)− 2m

h̄2

∫
G(+)(~r, ~rs)V

(1)(~rs)ψ
(0)
sc (~k,~rs)d

3rs. (D.1)

To solve this equation a precise estimate of the Green function and the undisturbed scattered-
wave function is needed.

D.1 Green function

The Green function for scattered waves can be approximated by taking the Green function
for scattered waves for the undisturbed potential [43], [47], [48] defined by:

(
∇2 + k̄2 − 2mV (0)(~rs)

h̄2

)
G(+)(~r, ~rs) = δ(~r − ~rs), (D.2)

where the∇2 operator represents the derivatives to~rs. It can be solved by supposing the
Green function can be factorized (see section 6.2):

G(+)(~r, ~rs) =
1

4π2

∫ ∞

0

ei~p‖·(~r−~rs)g(py, y, ys)d
2p‖, (D.3)

where~p is a wavevector with length̄k andg(py, y, ys) is a one-dimensional Green function
perpendicular to the surface. Note, that ifg(py, y, ys) would be equal toeipy(y−ys)/2ipy

this formula can be converted to Weyls representation of a spherical wave, which in the
far-zone reduces to (conform equation (C.21)):

G(+)(~r, ~rs) = G0(~r − ~rs) =
eik̄|~r−~rs|

4π |~r − ~rs|
. (D.4)
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Inserting the factorized Green function in equation (D.2) and inverse Fourier transforming,
yields:

∂2g(py, y, ys)

∂y2
+ p2

yg(py, y, ys) = δ(y − ys) y ≥ y0, (D.5)

∂2g(py, y, ys)

∂y2
+ (p′y)2g(py, y, ys) = δ(y − ys) y < y0, (D.6)

wherey0 is the position of the interface,p′y = +
√
p2

y − k2
c andk2

c = 2mV0/h̄
2. The accent

denotes the value of the variable in the sample material and the positive sign is taken aspy

is also positive. The method of variation of parameters can be used to find the particular
solution of these in-homogeneous linear second-order differential equations [65]:

gp(py, y, ys) =

1
2ipy

∫ y

−∞

(
e−ipy(t−y) − eipy(t−y)

)
δ(t− ys)dt y ≥ y0

1
2ip′

y

∫ y

−∞

(
e−ip′

y(t−y) − eip′
y(t−y)

)
δ(t− ys)dt y < y0

, (D.7)

which if ys < y0 can be reduced to :

gp(py, y, ys) =

1
2ip′

y

(
eip′

y(ys−y) − e−ip′
y(ys−y)

)
y ≥ ys

0 y < ys

(D.8)

and ifys ≥ y0

gp(py, y, ys) =

1
2ipy

(
e−ipy(ys−y) − eipy(ys−y)

)
y ≥ ys

0 y < ys

. (D.9)

The complete solution for the in-homogeneous differentialequation can be found by adding
the particular solution to the solution of the homogeneous differential equation. Ifys < y0
the Green function fory > y0 should only have a component away from the surface in the
+y-direction. Fory < ys it should only have a component in the−y-direction, hence:

g(py, y, ys) =

c1e
ipyy y ≥ y0

c′2e
−ip′

yy + 1
2ip′

y

(
eip′

y(ys−y) − e−ip′
y(ys−y)

)
ys ≤ y < y0

c′2e
−ip′

yy y < ys

(D.10)

and if ys ≥ y0 the Green function fory > ys should only have a component away from
the surface in the+y-direction. Fory < y0 it should only have a component in the−y-
direction, hence:

g(py, y, ys) =

d1e
ipyy + 1

2ipy
eipy(y−ys) y ≥ ys

d1e
ipyy + 1

2ipy
eipy(ys−y) y0 ≤ y < ys

d′2e
−ip′

yy y < y0

. (D.11)
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ρ(py)

θ

S

ys

~rs,‖→

~r, in far-zone

Figure D.1: Propagation of Green function from a source,S of disturbance above the sample
surface to an observation point in the far-zone.

These solutions and their derivatives toy must be continuous aty = y0, hence ifys < y0:

g(py, y, ys) =

1
2ip′

y
τ̃ (py)eipy(y−y0)−ip′

y(ys−y0) y ≥ y0

1
2ip′

y

(
eip′

y|ys−y| − ρ(py)e−ip′
y(ys+y−2y0)

)
y < y0

(D.12)

and ifys ≥ y0

g(py, y, ys) =

1
2ipy

(
ρ(py)eipy(ys+y−2y0) + eipy |y−ys|

)
y ≥ y0

1
2ipy

τ(py)eipy(ys−y0)−ip′
y(y−y0) y < y0

, (D.13)

whereρ(py) = (py − p′y)/(py + p′y), the reflection coefficient of the wave reflecting at the
sample surface,τ(py) = 2py/(py + p′y), the transmission of the wave function traversing
the sample surface from outside to inside andτ̃(py) = 2p′y/(py + p′y), the transmission
of the wave field traversing the sample surface from inside tooutside. The Green function
can be seen as the propagation of a disturbance starting fromthe source point,~rs toward
the observation point,~r. If the disturbance starts above the sample, there are two possible
paths for the disturbance to reach the observation point (see figure D.1). One directly and
one reflected by the plane surface. The phase difference between these paths obviously
depends on the distance to the surface and for small scattering angles and in the far-zone is
just2pyys. If the disturbance is in the sample there is only one way to reach the observation
point, where the disturbance first propagates through the sample until it reaches the surface
and is partly transmitted with a transmission coefficientτ̃(py) = 2p′y/(py + p′y) depending
on the angle (see figure D.2). The transmission coefficient isactually the one of a plane
wave traveling from the inside to the outside, but after constructing the Green function it
is transformed to the one of a plane wave traveling from the outside to the inside, which
in this case are closely related. After the transmission thedisturbance propagates further to
the observation point. The phase difference with the wave supposedly transmitted from the
starting position if the sample was omitted is just(py − p′y)ys. If py < kc p

′
y will become

completely imaginary and the propagation of the disturbance in the sample is a phase-less
damped exponential wave function. In the case considered here ys, y0 ≪ y and hence the
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τ̃ (py)

θθ

S

ys
~rs,‖

~r, in far-zone

→

Figure D.2: Propagation of Green function from a source,S of disturbance below the sample
surface to an observation point in the far-zone.

one-dimensional Green function becomes:

g(py, y, ys) =
1

2ipy
eipy(y−ys)eipy(ys−y0)Ψp(ys − y0), (D.14)

where

Ψp(y) =

e−ipyy + ρ(py)eipyy y ≥ 0

τ(py)e−ip′
yy y < 0

(D.15)

and it was used that̃τ(py)/p′y = τ(py)/py. Assumingeipy(ys−y0)Ψp(ys − y0) is constant
or a slowly varying function of~p, the Green function for large distances (|~r − ~rs| >> λ̄)
becomes [66]:

G(+)(~r, ~rs) = G0(~r − ~rs)eipy(ys−y0)Ψp(ys − y0), (D.16)

where now~p = k̄(~r−~rs)/ |~r − ~rs|. If ys < y0 the condition for a constant or slowly varying
value ofeipy(ys−y0)Ψp(ys − y0), comes down to

∣∣(py − p′y)(ys − y0)
∣∣ ≪ 1, so that either

the sample surface structure should not be too highpy(ys − y0) < 1 or py(ys − y0) > k2
c .

These conditions start to overlap whenkc(ys − y0) ≈ 1, hence as long askc(ys − y0)≪ 1
these conditions are fulfilled for allpy. This condition will certainly not hold for the non-
diffuse component of the scattering as then the integral over ys− y0 extends from−∞ to 0.
The same result under the same conditions can be derived by using the method ofstationary
phase for double integralsas discussed by Mandel [1].

D.2 Wavevector distribution of scattered mutual coherence
function

The scattered-wave function given by equation (D.1) due to the undisturbed potentialV (0)

becomes:

ψ(0)
sc (~k,~r) =

∫
ψ0(~k‖)ρ(ky)ei~k‖·~re−ikyyd2k‖, (D.17)

where in the far-zone the interference between the incidentbeam and the scattered beam is
ignored. Using the wavevector representation of the Green function derived in the previ-
ous section and equation (6.74) for the incident-wave function, the scattered-wave function
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given by equation (D.1) due to the disturbed potentialV (1) becomes

ψ(1)
sc (~k,~r) = − m

ih̄24π2

∫ ∫
ψ0(~k‖)e

i(~k‖−~p‖)·~rsei~p·~r Ψk(ys)Ψp(ys)

py
V (1)(~rs)d

3rsd
2p‖,

(D.18)
and integrated over all possible contributions:

ψ(1)
sc (~r, t) =

ime−iωkt

h̄24π2
× (D.19)

∫ ∫ ∫
ψ0(~k‖)e

i~p·~r+i(~k‖−~p‖)·~rs
Ψp(ys)Ψk(ys)

py
V (1)(~rs)d

3rsd
2p‖d

2k‖.

If it is assumed thatclose to the sample surfaceboth the incident mutual coherence function
and the scattered one are homogeneous, the wavevector distribution of the scattered mutual
coherence function is defined by:

Wsc(~rs, ~p‖) =

∫
e−i~p‖·~r‖Γsc(~rs, ~rs + ~r‖, 0)d2r‖. (D.20)

Using the definition of the mutual coherence function and equation (C.7) and inserting the
above equation results in:

Wsc(~rs, ~p‖) = W (0,0)
sc (~rs, ~p‖)+W

(1,0)
sc (~rs, ~p‖)+W

(0,1)
sc (~rs, ~p‖)+W

(1,1)
sc (~rs, ~p‖), (D.21)

where

W (a,b)
sc (~rs, ~p‖) =

1

p2
yAs

∫
Win(~rs, ~k‖)S

(a,b)
k (~p,~k)d2k‖, (D.22)

where thesample surface structure factorsare defined as:

S
(a,b)
k (~p,~k) =

∫
e−i ~Q‖·~r‖G(a,b)

s (~p,~k,~r)d2r‖ (D.23)

where ~Q‖ = ~p‖ − ~k‖ equals the wavevector transfer parallel to the sample surface. The
sample correlation functionsare defined as:

G(0,0)
s (~p,~k,~r‖) =

R(ky)p2
yAs

4π2
, (D.24)

G(1,0)
s (~p,~k,~r‖) =

(
im

2πh̄2

)2

V0
τ(py)2

2py

∫
Ψp(ys)

∗Ψk(ys)
∗V (1)(~rs)

∗d3rs, (D.25)

G(0,1)
s (~p,~k,~r‖) = G(1,0)

s (~p,~k,~r‖)
∗ (D.26)

and

G(1,1)
s (~p,~k,~r‖) =

(
m

2πh̄2

)2

× (D.27)

∫ ∫
Ψp(ys)

∗Ψk(ys)
∗Ψp(ys + y)Ψk(ys + y)V (1)(~rs)

∗V (1)(~rs + ~r‖)d
3rsdy,
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D.3 Mutual coherence function at detector position

Using equations (C.17) and (D.22) the mutual coherence function at the detector position
becomes:

Γsc(~rd, ~rd, 0) =
1

As

∫

As

1

4π2r2ds

∫
Win(~rs, ~k‖)Sk(~p,~k)d2k‖d

2rs. (D.28)

This formula is derived under the condition of homogeneous incident and scattered mutual
coherence function at the sample position. The homogeneousness must extend over the
sample correlation length determined byGs.



Summary

This book starts with an introduction to coherence theory asapplied to neutron scatter-
ing. Further, it discusses application of this theory to some neutron scattering techniques.
Especially it describes the application to small angle neutron scattering and neutron reflec-
tometry. An extension is given of coherence theory for neutrons to incorporate neutron
polarization effects. This extension is used to describe neutron spin echo coding techniques
which are the basis for the mentioned applications.
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wave, 112, 113

Yoneda peaks, 77

Zeeman energy, 31
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