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The White Queens Riddle

'First, the fish must be caught!

That is easy: a baby, | think, could have caught it.
'Next, the fish must be bought.

That is easy: a peny, | think, would have bought it.

'Now cook me the fish!’

That is easy, and will not take more than a minute.
‘Let it lie in a dish!’

That is easy, because it already is in it.

'Bring it here! Let me sup!’

It is easy to set such a dish on the table.
'Take the dish-cover up!’

Ah! thatis so hard that | fear I'm unable!

For it holds it like glue -

Holds the lid to the dish, while it lies in the middle:
Which is easiest to do,

Un-dish-cover the fish, or dishcover the riddle?

from: Through the Looking Glass
and what Alice found there.

Lewis Carrol, 1896
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Fundamental Constants

symbol description quantity unit
N, Avogadro constant 6.0221415(10) x 10%3 mol~!
kp Boltzmann constant 1.3806505(24) x 10723 JK!
e elementary charge 1.60217653(14) x 10~ C

Jr gyro magnetic ratio neutron  —1.91304273(45)

m neutron mass 1.67492728(29) x 10727 kg
UN nuclear magneton 5.05078343(43) x 10727 JT!
Lo permeability of vacuum 47 x 1077 NA—2
h Planck constant 6.6260693(11) x 1073*  Js

h Planck constant divided 8 1.05457168(18) x 1073*  Js

fSource: Reviews of Modern Physigg (2005) 1-107.
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D, width detector diaphragm ig-direction 55
G(7,t) time-dependent Green function 5
G (7 7,) specialized (potential dependent) Green function 16
Go(T) Green function for a monochromatic free particle 9
G(y, =) two dimensional correlation function 23
G, (7) sample correlation function 23
G(T) sample correlation function 17
G,a(7) diffuse component of sample correlation function 65
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Preface

Delft University of Technology participates in a project fostrument development at the
second target station of the neutron spallation source, ISlgherford Appleton Labora-
tory. This project consists of the construction of a neutedlectomete©ffSpe¢optimized
for off-specular neutron scattering. Delft is responsilolethe development and imple-
mentation of spin-echo angular labeling to determine tHespécular reflection, which
in turn yields information about in-plane inhomogeneiti@his novel technique, devel-
oped in Delft, is already successfully applied in spin ecmalsangle neutron scattering
(SESANS).

In contrast to conventional off-specular methods, whegedarments are performed in
reciprocal space, the spin-echo method probes directlyahspace (on length scales from
approximately 50 nm to 5@m). The main object of this book will be the theoretical de-
scription and interpretation of small angular neutrontecatg and off-specular reflection
in real space as obtained by the spin echo technique.






Chapter 1

Introduction

When general properties are assigned to functions govéynadvave equation, coherence
theory can be applied. Then, it is possible to find generahfdations for the propagation
of wave functions despite their physical background mighdifferent. Coherence theory is
widely used in optical [1] scattering phenomena but is f&illy new in X-ray [2], [3], [4] or
neutron scattering. Textbooks briefly discuss the coherpraperties of neutron beams [5]
but do not apply it to neutron scattering. Rauch and collatoos [6] are using the results
of coherence theory to explain their neutron-interferoyneteasurements.

Recently Gihler used a space-time approach to derive the neutrorsiogtformulas
for many body systems [7] in the kinematic approximationthe following this approach
is followed and extended to the phase-object approxim@@pand neutron reflectometry.
Here, it is assumed that all wave functions statistically stationarfan ensemble average
is independent of the origin of time) and ergodic (an enserabérage is time-independent
and equal to a time average) [1] and only second-order cobereffects are discussed.
Further coherence theory is used to describe neutron patem effects [9] and the way a
polarized beam is transported through an instrument. Tiables a coherent approach to
these effects without the need for some ad-hoc definitioreambpolarization and analysis.

Coherence theory can be interpreted as a shorthand ndfattidve description of ensem-
ble averages of wave functions and their (mathematicapgnta@s. In general coherence
theory does not give new insight in the involved physics. $&it complicates the classical
view of a neutron as a small magnet moving through the ingtntrperforming Larmor
precession in magnetic flux density regions. However, iegpossibilities to apply insight
from one field of physics to another. The main advantage oéimite theory is that it gives
the possibility to calculate the results of the propagatibthe wave function through the
instrument directly. No ad-hoc folding of theoretical rikswith instrumental resolution
is needed, but direct computation of measurable data islpes€oherence theory seems
to be quite complicated and unnecessary to describe theomeptopagation through an
instrument. But after getting used to the concepts of theialuioherence function and the
way this function is propagated through free-space andespéh magnetic flux density it
can give a more thorough account of the important effectereednd after the scattering
process.
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Chapter 2

Coherence theory

2.1 Definitions

Let ¥(7,¢) denote a neutron wave function characterizing the field @&itpoat timet.
For a realistic neutron source it will be a fluctuating fuontbf time and may be regarded
as a typical member of an ensemble consisting of all possiélgron generating events.
It consists of a large number of Fourier components indepeindf each other, so that
their superposition gives rise to a fluctuating field onlyatdmble in statistical terms. For
a statistically stationary beam it can be constructed frismtonstituting monochromatic
waves:

W) = [ vple i, (2.1)

wheref: is thewavevectomor propagation vectarw;, = v,k wherev, = hk/2m equals
the phase velocityof the wave function aneh equals the neutron mass. Note that, is
determined by the total energy of the neutron (the sum oftiiad potential energy) and
is constant for a statistically stationary beam. The wawstoras related to the wavelength,
A of the neutron wave by = 27/\. Statistical stationarity is related to the frequengy,
of the neutrons wave function. Hence, processes with retdirae constants much larger
thanw, ' can still be treated.
Knowing the wave function, the neutron density can be cateadl by:

p(7) = (WH(F )W (T, 1))y, (2.2)

where(z(t)), denotes the time averagex(ft) and X * the complex conjugated value of the
function X. The neutron flux (or neutron current density) is given by

T = » {<\I/*(F, t)%w@ t)>t} , 2.3)

wheref{a} denotes the real part of

1The phase velocity is the velocity at whiclphase changés propagated through the medium. For light this
is the speed of light, which in vacuum does not depend on thvelemagth of the waves. For neutrons, the phase
velocity is inversely proportional to the wavelength antf bathe velocity of a classical neutron. In a medium it
is determined by the neutron scattering properties of tinstitating particles.

3



4 Chapter 2. Coherence theory

When the wave function is quasi monochromatic, for instam€gaussian distribution
with an average wavevector bfand an effective spread dfk :

~ e—(k—E)2/2Ak2

(P = kT 2.4
Yp(M) = NN (2.4)

equation (2.3) reduces to: .
J(7) = 20,(7), (2.5)

wherew, = Evp/l_c. Note that this equation holds exactly only for a beam in tinection
Up. If the divergence of the beam becomes too large this apmiation is not allowed. The
time dependence of the density and the flux disappears astatistically stationary fields
are taken into account. Further it is assumed that all field®eyodic, indicating that time
average and ensemble average yield the same results.

The neutron density itself is not sufficient to describe te&lfcompletely, since it does
not contain information on the propagation of the waves.rétoge themutual coherence
functionis introduced and defined as:

F(Fl,FQ,T) = <\I/*(7_"1,t)\11(7?2,t+7')>t. (26)

It represents the correlation between the field at a pdirdand the complex conjugated
field at a pointr; at time moments andt + 7 respectively. As the considered field is
statistically stationary the ensemble average is indepanadf timet¢ and only the time
difference between two point influences the mutual cohereNote that the density of the
wave function can be determined from the mutual coherenugifun as:

p(7) =T'(7,7,0). (2.7)

The mutual coherence function can be normalized resultinigg complex degree of cohe-
rence

V(71,72 T) = —m—t. (2.8)

It can be shown [1] thalty (7, 7%, 7)| < 1.

2.2 Coherence time and lengths

The coherence time,. of a wave function is a measure of the time interval in which ap
preciable amplitude and wave correlations of the wave fandt a particular poinf in

a fluctuating field will persist. The mutual coherence fumetcan be used to define the
coherence time of a wave function. A definition of the coheectime [1] can be:

[ 27 r) [P dr

SO I )P dr

o0

tC(F)2 =

(2.9)

For a quasi-monochromatic beam the coherence time candiedeb the effective spectral
width of the wave function at poin®:

te > (2.10)

2Akvy,’
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where the equal sign holds for a Gaussian distribution. dhafition of coherence time
is useful when the wave function is quasi-monochromatic thedspectrum has a single
reasonable well-defined peak. In other situations othenidiefis can be applied [1].

In non-dispersive medfgand statistically stationary fields) the temporal coheeszan
be expressed in terms of the spatial cohereﬁ{feﬁ, 0) [1]:

N
/!

I(F,7 1) = /F(F,ﬁ,O)G(F— i, r)dr (2.11)

whereG(7, t) is the time-dependent Green function:

N i(k-F—kupt) 177
G(r,t) = L /e dk. (2.12)
This means that under such conditions the coherence timgdted to the longitudinal
coherence length, which is the distance traveled by the wave function duriregc¢bhe-
rence time. As the neutron phase velocity depends on theamewavelength this limits
the applicability of general coherence theory to quasi-ocbinomatic beams. For a quasi
monochromatic wave function the phase velocity can be takestant, so the longitudinal
coherence length is given by:

5\2

1
> = .
CT2Ak T 4mAN (2.13)

le = vpt
where)\ is the average wavelength of the wave function dndthe effective wavelength
spread equal thk\? /27.
The general coherence length,can be defined in a similar way as the coherence time,
but this does not lead to a finite value for the coherence teatgtome distance from a pure
incoherent source. In this case one can define the cohemmgth las:

f_oooo |T1| ‘F(F7F+F170)|2 drl
[ D7+ 7L, 0) P

re(F) = (2.14)

Note that the termongitudinal applies to the direction of the propagation of the wave
function. Only if the wave function can be regarded as a bédanidrm becomes useful.
However, one must keep in mind the conceptual differencedrmt the longitudinal cohe-
rence length as derived from the time dependence of the fregbarence function and the
general coherence length as derived from the spatial depeesdf the mutual coherence
function. In a directed quasi-monochromatic statisticathtionary wave function the lon-
gitudinal coherence length is the same as the general aoteelength taken along the beam
direction. Then the general coherence lengths in direstparpendicular to the beam are
referred to asransversakoherence lengths.

2A non-dispersive medium, is a medium in which the phase igldoes not depend on the wavelength of the
wave function. Here, it is assumed that for quasi monochtieautron beams this condition is full-filled.
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59
Py

: Imin :I7n,aac

Figure 2.1: Visibility of interference fringes illustratevith the help of a two-beam inter-
ference experiment.

2.3 Visibility of fringes

The modulus of the complex degree of coherence can be uaddras the visibility of the
fringes created by two point8;, and P, as shown in figure 2.1. Scanning the screen with
point P the intensity of the sum of the wave functions expanding fpomts 2, and P,
varies between a maximuni,{,.) and minimum (,,;,) value. The visibility defined by
Michelson in 1890 [10] is given by:

_ Inaz — Imin _ 2 p(Fl)p(FQ)

7 can be interpreted as the phase traveling-time differemcedth P, P (s1) and P, P (s2)
equal to(s; — s2)/vp. In the extreme case that= 1, the average intensity around any point
P in the fringe pattern undergoes the greatest possibleti@ariarhis representsomplete
coherence In the other extreme case = 0, no interference fringes are formed at all.
This is calledcomplete incoherencé he intermediate valugs < v < 1 represenpartial
coherenceThe phase of the complex degree of coherence determinegalseposition of
the minima and maxima of the intensity while scanning with

The complex degree of coherence is associated with pgingd P, of the wave func-
tion. It can be interpreted as the effective retardatiomefitave function a®; with respect
to the wave function aP,. The complex degree of coherence contains an ambiguitisas a
s1 — s9 influences the value. However, when the wave function isiquasiochromatic and
7 is restricted to a small enough range of values which is listrad case, this influence can
be approximated by

‘7(7?17?277—” . (215)

’Y(Fly ’F23 Tl) ~ ’Y(Fla FQ, 72)€_iE1]p(Tl_T2) (216)
and _
D(F1, 7o, 1) m (7, 7o, 7o)~ Kvp(Ti=T2), (2.17)

under the condition that
71— 72| <<t (2.18)
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Over ar range satisfying this condition and alsal” are periodic inr with a period equal
to the mid perio®r/kv,, of the wave function.

2.4 Propagation of mutual coherence function

It can be shown [1] that the mutual coherence function isextilip the same differential
equation as the wave function itself, with respect to car@tgsr; andr. The time-
dependent Schrodinger equation [5],

OV R
i pram —%V U(7,t) + V(F)U (7, t), (2.19)

whereV (7) is the complex optical potential, can directly be used towalke that

2m O (7, 7 2mV* (7
V%F(Flvféa/r) = _Z_ma (T17T2,T) + my. (’rl)

% 87’ h2 F(Fl,FQ,T), (220)

and

RN ‘QWL(?F(Fl,FQ,T) 2mV(F2)
VaL(7, 7, T) = —17 o + 2
Wherevf is the Laplace operator taken with respect to the pgintunder the conditions

of a quasi-monochromatic beam as introduced in the prewecison:

F(F1777277_)7 (221)

T (71, 7, 7) = D(Fy, 7, 0)e e (2.22)
then
ol (ry,ma, T oL
o7, 72,7) 1@ 27) _ i RD(F, 5, 7), (2.23)
-
so that the wave equations reduce to:
2 (7 -
VAL (7, 7, 7) = (%(Tl)—ﬁ) L(r, 72, 7), (2.24)
and
2 . _
VIT(F), 7, 7) = <%(’“2) _ k2> (7, 3, 7). (2.25)

2.5 Propagation in free space

The solution of equations (2.20) and (2.21) in free space” = 0) when the mutual
coherence function propagates into the half-space 0 yields the coherence propagation
law. It can be derived by applying the Rayleigh diffractianrfiula of the first kind to
the wave function. The Rayleigh diffraction formula jussdebes the wave function in the
half-spacer > 0 given its value and derivative at= 0. Hence, it does not really describe a
propagation. Itis just a solution of the wave equation wlith ¢orrect boundary conditions.
However, within certain limits, the solution of a wave edoatcan be understood as the
propagation of a ray [5].
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Py

Figure 2.2: Notation relating to the propagation of the ralitoherence from plane = 0
into the half-space > 0.

Applying the definition of the mutual coherence function fijd using the Rayleigh
diffraction formula twice, the propagation of the mutuahecence function can be de-
scribed by:

Lo cos 01 cos 05 - = R>
I'(71,7,T) 472 // R2R2 el (7’/177"/277'_ T) &*r ’d2r2, (2.26)

whereg is the differential operator

Ry— Ry 0 RiRy 0?

5T T2 g2
vy  OT vy OT

p=1+ (2.27)

The integral is taken over point‘zI andr_’; of planex = 0, Ri =7 — rz andé; is the
angle between the ling;S; and thex-axis as shown in figure 2.2. Under the conditions of
a quasi-monochromatic beam:

(7= ) = A e, @29
P
6F / 7 _ - —
w — i T 7, 7) (2.29)
T

and Lo
%L (r], 15, 7)
o
If further R; >> 27/k then the first two terms of the differential operator can bgleeted
and equation (2.26) reduces to:

0 0 7;’2:(32731) = =
L(71, 7, T // €8 1CORSI}2£5\2 (7, 7)d?r) d?r). (2.31)

= —02k*0(r}, 75, 7). (2.30)
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T

Figure 2.3: lllustrating the notation relating to the fame form of the propagation law.

One should realize that the propagated mutual coherencéiduaris calculated by two
integrals. One can be interpreted as the propagation ohth@ent-wave function reaching
point 7, integrated over the source-wave function’at The other integral does the same
for the incident-wave function reaching poifatfrom r75. This can be stressed by re-writing
the above integral as:

(7, 7, T) :4152// cos 0, COSGQGo(ﬁl)*Go(EQ)F(TZ,’I“_é,T)d2’I“/1d27‘/2, (2.32)
=0

where agairk; = 7% — ! and
ik

L e
Go(7) =

- (2.33)
is the Green function for a monochromatic free particle witivevectork, describing the
propagation of a converging spherical wave in vacuum towleedrigin at” = 0 in each
half-space{ > 0 andz < 0). The complex conjugated Green function describes the
propagation of a diverging spherical wave in vacuum fromahigin. Note that the Green
function is only applicable for >> X (see also appendix D). The cosine factors represent
the fact that the solid angle in the field of vision of the obeef a surface area when seen
under an angle scales with the cosine of that angle.

In most cases of practical interest the poiRtsand P, are situated in th&r-zoneof the

source as illustrated in figure 2.3. As previouBly = 7 —r_é andcos ; = 7;-¢;/R;, where
€z is the unit vector in the-direction. In the far-zoneos 0, ~ cosfs, R; = r; — T} f;/rj
so that:

Ry — Ri =1y —r1 —ri2, (2.34)

whereris = 1% '7’3/7"2 — 7 -771 /r1. Also R; can be replaced by; in the cosine factor and
in the denominator of equation (2.31), giving

9 0 ’L‘E?(’l‘g*’rl) - = =
D(7, 7, 7) = o8 IC:TT;; // Oe*”””l“(r’l,r’Q,T)dQTQdQT/Q. (2.35)
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This equation enables the calculation of the propagatidhefmutual coherence function
from neutron source to sample and from sample to detector.

2.6 Propagation from source to sample

A typical neutron source consists of unrelated neutron igeimg events and limiting the
case to statistically stationary phenomena the mutualreolce function at the source posi-
tion (x = 0) is given by [1]:

263 (r_/i — r_’;)e*ifwﬂ, (2.36)

whereJy(7) is the isotropic neutron source flux in neutrons per secondgqeared meter at
7. 6 (7) is the two-dimensional Dirac-delta function, expresshegrnutually uncorrelated
source elements. The normalization factors are introdteechnsform the neutron flux
to the density of the wave function. Although this is an idestion it will hold if the
correlations extends only over distances of the same ogl#reaneutron wavelength and
the source dimensions are much larger. Substituting thégjiration (2.35) yields for the
mutual coherence function

1 ik(rg—m—q;,,‘r) 50 50 Lo o
D(7, 72, 7) = 55 S / e () (2.37)
=0

2vp Amriry

=

and for the complex degree of coherence

)fr:o e—thzr J ( )d2 !
Joco Jo(r')d2r!

'Y(_’l, _¢2’ T) _ eil}(rg—ﬂ—i);ﬂ'

, (2.38)

wheregis = k (f—; — %) If the source intensity is constant over some aperturaitegial

overx = (s limited to the areal, of the source and the integral containing the exponential
in equation (2.38) reduces to a shape transform of the apertu

—iq12-1! J2,./
(71, T, T) = eik(Trrrva)fAOe—dT. (2.39)
Ao

This equation can be used to calculate the transversal eotetength at a distande of
a circular homogeneous completely incoherent quasi-mwootatic source with radius
with it surface perpendicular to theaxis. Then®; = (L,y1,21)", 7 = (L, 2, 22)" and
the above becomes:

- = il_c(rg—m—vp‘r) 2‘]1(1/) (240)

’Y(’I"],’I"Q,T):e Ta

wherev = kar/L andr = \/(y2 — y1)2 + (22 — 21)? the distance between the two points.
The amplitude of this function is shown in figure 2.4. Usingstlesult in equation (2.14)
yields:

L fo 1J1 du

e SR — 241
ka S um2 (o )2du (24D

Te =
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Figure 2.4: Amplitude of the normalized mutual coherenceefion or complex degree of
coherencely| as function of the normalized distance(see text).

so that
_ L 37 L

re= oo~ 1.178%. (2.42)
If the source area is 1 mirand the distance is 4 m then the coherence length for 0.2 nm
neutrons is about 250 nm. Sometimes the transversal cateetength is defined as the
distance over which the modulus of the complex degree ofrewire is reduced from its
maximum valuel for =0 to 0.88 atr = r.. This value is reached far = 1, hence

r. = L/ka. Another possibility is to use the first zero qffbr v = 3.83 as a measure for
the coherence length. All definitions are a bit differentireach other, but clearly have the
same order of magnitude.

This example helps to understand, how it is possible to er@§partly) coherent neutron
beam from a (purely) incoherent source. The coherenceHangteases as the distance
from the source increases. Hence, the limited size of thececand the distance between
source and observation point creates the partly coheram bé the source would not be
limited (viz. a — oo) the neutrons emerging from this source never would becqauly)
coherent. Hence, the propagation of the radiation from ¢efsize source is a sufficient
condition to create partly coherent beams.

2.7 Propagation from sample to detector

-

In the detector the count rate is determined as an integthkeafieutron flux/(7;) over the
detector aread, at a position;:

I, = J(rg) - ita,d?rq, (2.43)
Aq
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wherefi4, is a unit vector perpendicular to the detector area. Usinggons (2.5) and
(2.7) and assuming, - 74, = v, this reduces to:

I =2v, / L(7g, 7, 0)d%rq. (2.44)
Ag

Assume that the whole sample is in the half-space 0, then the mutual coherence func-
tion atx = 0 is propagated to the detector. One can use equation (2.35l¢alate
['(rg,7rq,0):
- COSQ gd 72p (7‘ i 2 2
U(raq,74,0) = e 2=TID(r o, 0)d?r d2r, (2.45)
wherep = ki /rq. Here, it is assumed that the detector is in the far-zoneeo$émple. If

further the spatial coherence is much smaller than the saarph equation (2.45) can be
reduced to

22 0 g -; -
I(ry,74,0) = 0052 d / e PR 0)d* . (2.46)
T(i =0
where
F(r',7) = 272 F(r_’i,ﬁ + rZ,T)d2r’1. (2.47)
=0
Note that for a homogeneous beam at the sample positioretthiges to:
F(r',7) = N2 AL (Feo, 77 4 o0, 7), (2.48)

whereA; is the sample aperture ang, the average sample position. If the detector area is
small andcos 64 and7,; can be taken constant the detector count rate is:

2 -

1y(Fy) = zvadLj‘gd/ e P R(7 0)d2r, (2.49)
T(i =0

Equation (2.49) describes the detector count rate as a imwerional Fourier transform

of the mutual coherence function at= 0 integrated over thgz-plane. Otherwise if the

detector area is large and the scattering is mainly in soefeantial direction so thats 6,

can be taken constant the total count rate in the detectorés gy:

Iy = 2v, cos? 0, / I‘(r_’i, r_’i, 0)d*r}, (2.50)
=0

which can be interpreted as the count rate in a detector ¢olander an anglé, at the
sample position with an area equal to the cross section digben.

2.8 Beam divergence

The relation between beam divergence and the mutual codesfenction can be underlined
using the results of the previous section. Assume the beame#ed from an incoherent
source. The mutual coherence at the source position is giyeguation (2.36). For the
divergence of the beam at= r, the spread in angles is used, being defined as:

S O G 7, 0)dPra ([, 00,7, 0)Pra) (250)
fA (7, 7q, 0)d2rqg fA (T, g, 0)d%rg '

AG? = (07) — (0)* =
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where the beam propagates along thaxis and the angles are assumed to be small com-
pared to 1. Note thafA (F4,74,0)d?ry is just the total number of neutrons per second
moving through the detector aperturgéy. Assume that at = 0 the mutual coherence
function is given by equation (2.40), théYir,, 74, 0) is given by:

. JoAoAqr? [ .
[(7y, 74, 0) = ﬁ/ e~ 3 (V) dw, (2.52)
d

whereg, is the radial component gf andr, = L/ka, the transversal coherence length at
2z = 0 due to a incoherent source with radiwgt positionz = —L. As6 = ¢,./k and
() = 0 equation (2.51) becomes:

1S [T e (v)dvdn

AG? = 2.53
k2 [0 )T ety (v)dvdn (2:33)
or 1
a
A= — = —. 2.54
kr. L ( )

Hence, the beam divergence is inversely proportional tavénesvector and the coherence
length.

2.9 Propagation from source to detector

For a good understanding the propagation of the mutual eolserfunction from source to
detector is discussed. This is the same as from sample totdetexcept now the mutual
coherence function at the sample position is that for anhieoence source according to
equation (2.36). The count rate in the detector can be datethiy using equation (2.45)
(or equation (2.37) can be used with equation (2.44)) so that

I = / cos” b ;o / To(r)d2r, (2.55)
Ay 47rrd -

If the detector area is small, so thatandcos 6; can be taken constant this reduces to:

Agcos? by

Iy = 72/ Jo(r])d?r,. (2.56)
=0

4mrs
Further if the source is homogeneous and limited to an dgea

A cos? 0
I, = JOAO%. (2.57)
7T7‘d

JoAy is the total number of neutrons emitted from the sourtegos? 6,/47r? is the total
fraction of source neutrons traveling through the deteatea and, is the angle between
detector surface and the line between source and detector.
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Chapter 3

Propagation in the sample

Propagation in free space was elaborately discussed inrévéops chapter. However, the
use of wave equations for the mutual coherence functionlte@ sbe propagation through
some material has no advantage over normal solution mettaather, one should realize
that according to quantum mechanics the wave functiorf issetattered by the interaction
potential. The effect on the mutual coherence function isvdd from its definition. That
is why for propagation through a sample the solutions of tbler&linger equation for the
wave function are used. By applying the definition of the nalitoherence function these
solutions can be transformed to a form where the mutual esiverfunction directly after
the sample or in the detector is expressed in a sample ciorefanction and the mutual
coherence function just before the sample or in the source.

3.1 Scattering

The equations in the previous chapter were derived for thpggation of the mutual cohe-
rence function in free space. This does not include the extadt process. In the most
general case for elastic scattering, propagation of thee\fianction itself in the sample is
governed by the stationary Lippmann-Swinger equation [5]:

U () = Uy (7) — 2—? /GO(F— Fo)V (75 ) W so (7 ) d>rs, (3.1)

whereV;,, (¥) represents the channel state or incident wave functiQp() the scattered
state or function}/ (7' ) the scattering potential of the sample a#gl(7) is the free particle
Green function given by equation (2.33). Strictly speakhig Green function is only valid
for a mono-chromatic beam in vacuum. Here, it is assumedhleavavevector spreatik
is sufficiently small not to impart this equation. The timg@dedence of the wave functions
is given by:

U (7, t) = U (F)e "t (3.2)

The basis of the Lippmann-Schwinger equation is the tinfgeddent Schrodinger equation
applied to a time-dependent potential. The potential cafatterized in a time-dependent

15
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Figure 3.1: Scattering geometry.

part and a space-dependent p&ftr, t) = V,.(¥)V;(t). By varyingV;(t) in a specific way
(0fort — +oo andl during the scattering process), the channel state can btfidd as the
solution for the Schrodinger equation before the scatteprocess and the scattered state
as the solution after the scattering process [11]. It cam laésderived from the stationary
Schrodinger equation assuming appropriate boundaryittonsl (an incident plane wave
and an scattered spherical wave at the sample position).

Normally the scattered-wave function is unknown. Howetleg, Lippmann-Schwinger
equation can be iterated resulting in an infinite seriesbfQi(7):

2m / GolF = Fo )V (Fa1 ) Wan (7ot ) Pr o+ (3.3)

2m 2 o . R R . o
<?) //GO(T — Fs1)V (Fs1)Go(Fs1 — To2)V (Fs2) Wi (Foz ) dPrsad®rsy — - -+,
which can be rewritten in the form:

2 )
Vo) = Winli) — 2 / GO (F, 7V (7 U (7 )dPrs, (3.4)

where G(H)(7,7,) is a specialized (potential dependent) Green functionritésg the
scattering into on scattered-wave function and defined kystilution of the following
Schrodinger equation:

— 2mV (7 . S
<v2 LR %) G (7,7 = 67— 7). (35)

where theV? operator represents the derivativestoThis equation describes the scattered
wave as a superposition of waves produced by many scatevrergs occurring at different
elements of the sample (see figure 3.1). From this equat®pritpagation of the mutual
coherence function through the sample can be derived.

Introducing the scattering operat@, equation (3.1) can also be transformed to:

Vo (7) = Wi (7) — 22 / GolF — 7)) T (7)) Wan (7). (3.6)
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The mutual coherence function of the scattered state cargressed in the mutual cohe-
rence function of the channel state. This can be calculatid)the definition (2.6) and the
Lippmann-Swinger equation (3.1) yielding:

Fs(;("?lv ’F27 T) - F’L‘n(_’la F27 T) (37)

s / G;(_’l - ﬁG)TE(ﬁg)Fin(ﬁ%FQ?T) + GO(FQ - FS)Tg(FS)FTn(FS7F17 _T)dSTS

2
} //GO(FQ — )G (Fy — Fo) T (Fo) T3 (17 ) Din (Fs, 17, )21 .

The first term of this equation can be understood as the matakerence function of the
direct beam, the second term as an interference term betieelirect and scattered beam
and the last term the mutual coherence function of the sedttseam. However, in general
the mutual coherence function at the detector positionesled. Using equation (2.44) and
7= F’S — 7, the count rate at the detector due to the scattered beam becom

2
Id - 27}]3 //Rout(ft@a 7_’; + F) l:%:l TE(FS)Tg ('Fs + F)Fin(f‘;vﬁs + 'Fa O)dgrsdg)rv
vy
(3.8)
where
Rout(71,7) = (470)% | G (7q — 72)Go(Fg — 71)d*rq. (3.9)
Ag
If it is assumed that the direct beam is spatial homogeneweistbe sample-beam cross
section and the same holds 8y,,; the count rate at the detector position becomes

I = 2u, / Rout (Fao, 70 + 7)Ca (F)Tim (a0 Fag + 7, 0)dPr, (3.10)
wherer is the average sample position and
m 2
Gs(7) = {ﬁ} /T;;(FS)T,—;‘(FS + P)d®r, (3.11)
s

is a sample correlation function comparable to the scatideingth density correlation func-
tion. Note that equation (3.10) holds for any scatteringaagd for any scattering operator
function. Hence, the count rate in the detector is deterdhioyean integral over the sample
correlation function and two functions that are determibgdhe instrument details. These
two functions together constitute the resolution of thérimaent under consideration.

The interpretation of this equation can be understood bkitapat figure 3.2.I';,, rep-
resents the effect of the phase differences between pattl 2 an the coherence function
of the incident beamR,,; represents the same for the scattered beam. Only paths which
comes from within the coherence volume contribute to therfatence at the detector posi-
tion.

In generalR,,; andl';, are complicated functions depending on the full instrurakent
details. Under certain conditions these functions can berchéned approximately. Equa-
tion (2.31) and equation (2.36) can be used to calculatenttident mutual coherence func-
tion for a completely homogeneous and incoherent sourdeanéad:

2vp, S 3

oo . JO eiE'F 5
Lin(m1,71 +7,0) = —/ —dr, (3.12)
Ao Aqr "Fl r
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detector slit
entrance slit sample

Figure 3.2: Scattering geometry.

wherek = k(7 —17)/ ‘Fl - ﬁ‘. If it is assumed that the mutual coherence function of the

incident beaml;,, is only different from O for small values of(i.e. the coherence length
of the incident beam is much smaller than the sample dimegs}site conjugated Green
function in the expression fak,,; can be approximated by

Go(Tq — 7o) = Go(7y 1)64];?, (3.13)

wherer = 7 — 7, andp = k(7 — 1)/ |Fq — 71| S0 that

Lol e P
Rout (71, 72) = / ——d°rq. (3.14)
Ag "rd - 7”1‘

If the source, sample and detector dimensions are small @@do the distance between
the source and sample at the one hand and sample and detettiera@her,r; can be
replaced byryy, the average sample position. The count rate in the detdc®ito the
scattered beam becomes:

—q-T
Ip=Jo / / / sdPrad*r G (P)d r, (3.15)
Ao JA ’ 7’

4 4t |7y —Tso\ Tsg — T

whereq = p — k is also known as the wavevector transfer. The argument obtier
integral is proportional to the number of neutrons scatkdrg the coherence volumer
at the sample position reaching the detector. In this viesvsdimple correlation function
is comparable to a scattering amplitude. To stress theutsoleffect this equation is
rewritten as a convolution:

Ii(7y) = RET(Q) = Si(q), (3.16)

—q-T
RFT(q) =Ty / / / sd*rqd®r' dr (3.17)
A

where

4 4 |7y — Tso\ Tso — T’
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can be interpreted as the instrumental resolution funetiah

Sk(q) = / e TG (F)dPr (3.18)

is called thesample structure factaand equals the Fourier transform of the sample corre-
lation function.

Note that this interpretation of the scattered detectontrate as a convolution of sample
structure factor and instrumental resolution is only véfithe detector area and sample
dimensions are small compared to the distance between samgl detector. If this is
the case, the mutual coherence function at the sample gositin be considered to be
homogeneouslt only depends on the difference between the two positiectors (see
also appendix C). If it is assumed that after scattering etstmple the scattered mutual
coherence function is also homogeneous, then the coheappceach to scattering yields
the same results as the stationary collision theory [11§¢deing the scattering of a wave
function by means of transition matrices, scattering atagés and differential scattering
Cross sections.

3.2 Born approximation

In the kinematic or first Born approximation it is assumed tha scattered beam is only a
fraction of the incident beam. In this case the transitioarafor7;, can be replaced by the
Fermi pseudo potential [5]:

Ti(r) = V(7) = ———po(7), (3.19)
wherep, (') equals the scattering length density of the sample defined as

po(F) =Y bi8(F = 7%) (3.20)

andb; is the bound scattering length of tit atom. The sample correlation functiéh ()
as defined in equation (3.11) becomes the three-dimensiandliove contrast correlation
function,~g (7) [12]:

Gs(7) = yu(r) = /V v (7s) o (Fs + P)d>rs. (3.21)

3.3 Phase-object approximation

De Haan et al. [8] showed that for small angle neutrons soadgt@&nd thin samples it is
possible to directly relate the mutual coherence functimitd the sample to the one before
the sample using Feynmann path integrals [13]. An exampseicifi a scattering process is
shown in figure 3.3. In the small angle approximation the wiawvetion can be calculated
by estimating the phase acquired by the neutron wave if itfbbolved the classical path
through the sample. Hence, the wave function behind the Isapggomes:

-7 T
Ueelr1,y,2) = \I/m(a:o,y,z)em fmo n(z,y, 2)dz , (3.22)
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Figure 3.3: Scattering geometry projected on a plane witlstamty.

wherex is the incident beam direction, = z( a plane just before the sample,= x;
a plane just behind the sample anl:, y, z) is the local refraction index of the sample.
The integral in the exponent is known as the optical pathtlend\s it is assumed the
scattering object only influences the phase of the neutrae izanction this is called the
phase-object approximation. This approximation can alsadérived using thé&ikonal
approximation[5], [11] and holds forfVV ()| < |kV/(7)|, which is valid as long as two
conditions are fulfilled [14]. First, the difference in ol path length between the classical-
line path for straight lines through the sample with a smadfla ¢) between them should be
much smaller than the neutron wavelength, hénge-z,)60? < 2\ orz; —zo < 872/¢%),
whereq = #k. For instance iy < 0.01 nm~! and\ ~ 0.2 nm thenz; — 2y < 4 mm.
Second, the local refractive index does not change apolgdi@m one path to the other. If
these conditions are not satisfied it is possible to makeanskarder correction or to break
up the calculation in slices of small enough pieces [14].

The refraction index is related to the potenti&x, y, z) given by the Fermi pseudo
potential:
Viz,y,z) _1 N py (2,9, 2) _1 N2 )2

hwe T B 472’
wherefiwy, equals the total energy of the neutrorits wavelengthp,(x, y, z) the coherent
scattering length density arig the critical wavevector defined by4rp, (see also sec-
tion 6.2). Incoherent scattering, large angle cohererttesiag or absorption can be taken
into account by a suitable imaginary part of the refractioteix [5]. The approximation
is valid for thermal neutrons as used in SESANS (spin echdlsamngle neutron scatter-
ing) [15], [16], [17], [18] or USANS (ultra small angle neotr scattering) [19], [20], [21]
as the refractive index is close to unity. Note that the d@wiafrom unity of the refractive
index is proportional to the square of the wavelength sodteases rapidly for increasing
wavelength.

n?=1- (3.23)
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Propagation of the mutual coherence function through timepa (fromz = x( to
x = x1) can be calculated using equation (3.22) and the definitiélheomutual coherence
function (2.6):

-

Doe (71,72, 7) = Ly (T1 — dy, 7 —Jmﬂ') W5 (7 —da ) =187 — da ), (3.24)

X

whered,, = (z1 — z0)é, and

da
S(r) = I_c/o (n(F+ xéy) — 1)dz (3.25)

is theextraphase shift acquired by the neutron wave function due to thterial properties
of the sample. Note thaft can be complex due to a complex refraction index. In primcipl
the subtraction of 1 from the refractive index is not needed iahas no influence on the
results. However, because the refractive index only diffesm 1 by a small amount, the
extra acquired phase shift is much smaller than the totadehbhift acquired after traveling
through the sample. The use of the extra acquired phaseestgifties series expansion of
the equation for small values 6f.

These equations can be used together with equation (2.4i@t¢omine the count rate at
the detector. By realizing thabs 6, ~ 1 for small angle neutron scattering the result is:

A .
I, = zv,,r—j / e TR (P d2r, (3.26)
d Jr=xz;

where
F(F) =X\~ / Fm(_'1,7:'—|-7‘_’,0)ezs(r+r 1) — 457 (1) g2 1. (3.27)
T=x0

An important feature of this equation is it describes whanmadly in SANS is called the
scattered neutron intensignd the direct beam. In the above formalism there is no differ-
ence any more: the direct beam is also refracted or in othestsvdhere is no direct beam.
Another important feature is that in general the coherenoetfon (3.24) does not have
to be a real valued function so that the scattering profilelmadifferent for positive and
negative wavevectors.

Assume that the incident beam has a homogeneous intensityttey sample cross sec-
tion, then equation (3.26) reduces to:

20, A .
I / G (PP TT i (P, 7+ oo, 0)dPr, (3.28)

whereG,.(7) is the sample correlation function:
Go() = / IS (F+ 1) — i8*(1) g2, (3.29)

Again by using equation (3.12) equation (3.28) can be réswias a convolution of the
instrumental resolution and the two-dimensional Fouramnsform of the sample correlation
function:

Iy = RTT(q) * Si(@), (3.30)
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Figure 3.4: Refraction geometry projected on a plane withstanty.

where the instrumental resolution is given by

A i
RFT(q) = _ Joda / / T % dPr (3.31)
2)\2 Ao
sO - T
and
Sk(q) = e TG (F)dPr (3.32)

3.4 Refraction

Refraction and diffraction occur when a neutron beam tsathebugh a medium where the
optical potential of the medium depends on the position.eimegal diffraction can be seen
as an interference phenomena of coherent parts of the iezhtieam. Refraction can be
understood as the interference phenomena of the coherest deam. However, as was
shown in the previous section the differentiation in direetl scattered beam is somewhat
arbitrary. Here, refraction is defined as small angle sdagjeat macroscopic surfaces. An
example of refraction is shown in figure 3.4.

Let space be divided into two half-spaces with a boundaryingeén angle of);,, with
the incident neutron beam parallel to thaxis. The refractive index of the left half-space
is 1 and of the right. Assume a neutron wave function, described by the mutua-coh
rence function]';,, is known at a plane for = x(, and they dependence is ignored. The
mutual coherence function at the position= z; can be calculated using the results of
equations (3.24) and (3.25) from the previous section. Thpggation of the mutual cohe-
rence function frome = x; to the detector position is given by equation (3.30). Igngri
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resolution effects and absorption or scattering (the céfra index of the medium is real)
the count rate in the detector position is proportionadtowhich in this case is given by

Se(@) = —iq- F/ S+ 71) —iS01) g2, g2 (3.33)
r=x0

where 7
S(7+71) = S(71) = k(1 = n) cot Oin (7

only depends o, so that equation (3.33) reduces to:

Sk(q) = / / o {k(1 = n)cotb,(7- €.) — 'T}dzrdzrl, (3.35)

- e,) (3.34)

4

The inner integral of equation (3.35) is taken over the whole z; plane and only gives
a non-zero result when the exponentis 0. In this @asel_ch/rd, wherer; is the detector
position. Hence:

((1 —n)cotbi,ey, —7q/rq) - 7=0, (3.36)

where it was used that thecomponent of’; is zero, thez-component is:; sin(0;,, — 0pu)
and thez-component:; cos(6;, — Gout)- Oout 1S the refraction angle and is determined by
the direction in which the detector is seen at the sampleiposiRealizing that” has no
y-component this reduces to:

(1 —n)cot by, = sin(0i — Opur), (3.37)
which under the condition thain 6;,, > |1 — n| is the same as:

c0os 0yt

=n, (3.38)
cos 0y,
known as Snells law.

One should realize that the Phase-object approximationlwlts if (z1 — x¢)(0in
Oout)? < 2. This gives an indication of the maximum length of the tréiasizone be-
tween the two media for equation (3.37) or (3.38) to hald:= 2y < 2\ tan? 6, /(1 —n)2.
Using equation (3.23) this is equalt@ — zo < 8 tan? 0;, (27 /k.)* /3. For silicon ¢, =
0.051 nm™1), 6,,, = 45° and an average neutron wavelength of 0.2 Bm=- 2o < 230 m!
For the region of total reflectiofy,, ~ |1 — n|. Thenz; — zy <« 2, which is not the case
and the above derivation is not applicable. The region w{pasial) reflection is occurring
is subject of chapter 6.

3.5 Born approximation for SANS

Kinematic or first Born approximation is the neutron scatigtheory for weak scattering.
In the weak scattering limit, the differen¢€(i"+ 1) — S* ()| is much smaller than 1.
The above equation (3.29) reduces to the kinematic or firgt Bpproximation by a series
expansion. The zeroth order term represents the incidemhbd he first order term is 0.
And the second order term represents the reduction of th@entbeam and the scattered
intensity:

G, (7) :AST+/ S(7 4 7)S* (7 )d*ry, (3.39)
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where 5 )

T=1- —/ S{S(7) }d?ry — —/ R{S(71)?}d?ry (3.40)

AS T=xT0 AS T=xo
whereR{a} is the real part ofi, S{a} the imaginary part of and A; is the beam-lightened
sample area. Note that the transmissidhis independent ofy and z as it should. By
substituting equation (3.25) the integral at the right hait of these equations can be
interpreted using the two dimensional correlation func{@?]:
5\2
Gely, z) = A_/ Yep (Y1, 21) V2D (Y + Y1, 2 + 21)dyrdz1 (3.41)
s JAg

where the projection of the scattering length density akbegheutron beam is given by:

Y2p (Y, 2) = / po(x,y, 2)dz. (3.42)

xTo

Equation (3.39) then reduces to

Gr(F) = A, (1 - G((O) + G(‘(F)) . (343)

3.6 Multiple scattering for SANS

Interestingly the phase-object approximation also dbssra multiple scattering effect as
derived by Schelten and Schmatz in the first Born approxond3]. This can be under-

stood by investigating equation (3.29), relating the sangplrelation function to the extra
phase shift acquired by the neutron wave function whilegirsmmg the sample:

G () = / IS+ Ta) —i57(7) g2, (3.44)
A

s

where the integration is over the sample surface aflea, This equation is an average of
the exponential over the sample area and can be rewrittelneasaimple area times the
expectation value:

G(7) = A B[S+ T0) =057 (%)), (3.45)

Now, if S(7) is real and has a Gaussian random distribution, a corral&tioction can be

defined as: )
Cr) = [ (SG+7) - S)(S(R) - So)r. (3.46)
s JAg

wheresS is the first moment (or average or expectation valuey@f,). This correlation
function can be expressed in the 2D-correlation functieegin equation (3.41):

C(7) = Go(7) — S2. (3.47)

The second moment (or variance) 8fr;) — Sy is defined asr?> = C(0). Then, the
expectation value of**("), known as theharacteristic functiorof S(7,), is given by:

E[eiS()] = eiS0p=0%/2. (3.48)
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Further it is assumed that ;) — S(7) has a Gaussian random distribution with zero mean
too and its variance only depends@n— :

9(7) = ([S() = 5+ 7)) (3.49)

where the average is taken over the whole sample area. Natg(if) can be reduced to
9(7) = 2(G.(0) — G.(7)). Further

E[ei(s(ﬁg)—sm-&-?))} _ e—g(F)/2, (3.50)
can be reduced to:
E[ei(sm)—s(ﬁaﬁ))] = Ge(M=Ge(0) (3.51)
so that .
Gy (7) = AgeCelD=C 0] (3.52)

the same as given by Rekveldt et al. [17]. This was also foynllbller in case of high
resolution electron microscopy [24].

3.7 Sample correlation function for a sphere

As an example scattering from a sphere is considered. Fonexesf(7), given by equa-
tion (3.25) becomes:

S(y,z) = 2k(n — 1)R {\/R2 —y? — 22} , (3.53)

where R is the radius of the sphere, the index of refraction of the homogeneous sphere
material,k the average neutron wavevector in vacuum &njd:} denotes the real part of
a. It was used thaf = ye, + z¢, . The sample correlation function (3.29) for a sphere
becomes:

G.(0,6) = / ¢S W20 =S (v:2) gy . (3.54)

A,

whereA; is the beam cross section assuming the beam totally envislegphere and is
in the z-direction. In the following the correlation in thedirection is ignored. The reason
for this is that SESANS or USANS techniques only determine@orrelation direction and
the other direction is averaged (see chapter 5). The seefalim factorcan be calculated

as:

_ RGO ~Giloo)} | R{G.(0) ~ G, (6)} (3.55)
R{G,(0) — Gr(o0)} R{G+(0) — Gr(o0)}’ '

which is1 for § = 0 and0 for § = co. Only the real part is taken because in practice only

the real part is measured (see section 5.2). Note(thét) = A,, here equal ter R2. From

the above equation (3.54) and assuming the imaginary p#areahdex of refraction can be

neglected, it can be shown that:

F(5)

R{G,(0) — G (8)} = / 1= cos(S(y, =+ 6) — S(y, 2))dydz.  (3.56)
A

Note that in the(y, z)-range where botl$ (y, z + ¢) and S(y, z) are0 the integrand i$).

Hence, the integration only has to be taken over the areaendrex or both are non-zero

(see the shaded area of figure 3.5). As sooh a2 R this equation reduces to:
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z —

S—6-R s=6+R

Figure 3.5: Correlation geometry projected opzaplane for the calculation of the form
factor of a sphereR is the radius of the sphere andhe probed correlation length. The
variablesr;, a; andrs, as are used to describe the integrals over the shaded area’s.

R{G-(0) — G, (0)} = G,-(0) — Gr(o0) = 2/ 1 —cos{S(y, 2) }dyd=. (3.57)

s

This equation can be rewritten as (see also figure 3.5) :

%KL@)—GAaﬁ%:?A%[frlO—m%{%n—lﬂMR2—ﬁ})dﬁmn

(3.58)
Solving this integral results in:

R{G,(0) — Grloc)} = SRC(n), (359)

wheren = ’2(n - 1)Rl_€’ and((n) = 4(2 +n? — 2nsinn — 2cosn)/n*. 1 is the phase
acquired by a neutron passing through a distanc®bthrough a material with refractive
indexn compared to a neutron traveling the same distance throughuwa For neutrons
of 0.2 nm passing through aluminum or silicon the distancetyuire a phase difference of
7 is about 76um, for copper 24:m. If n < 1then((n) ~ 1—n?/18+0O(n*) and ifn > 1
then((n) ~ 4/n* + O(n~3). This is shown in figure 3.6. The index of refraction is given
by equation (3.23) so that ~ 2R\p,. Hence, in the kinematic limit the above equation
reduces to:

WCA@—GJszQM#V£(1—%+{Wﬂ). (3.60)

Note that in the limit of very large the dependence on the refractive index and the neutron
wavelength vanishe®{G,.(0) — G,.(c0)} = 2mR?. As soon a$ < 2R the two sphere’sin
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Figure 3.6: Normalized scattering functiqfy)), describing the change in the amplitude of
the form factor as function of the phase acquired by a neytassing through a sphere di-
ameter of sphere materigl(full line). The dotted line is the approximation in the kinatic
limit (small ) and the dashed line the approximation in the refractioit (jlargen).

figure 3.5 start to overlap and equation (3.56) can only beutated numerically. However
for smally it can be expanded into a series:

R(G1(0) — Golo)) = [ D= (5,2 +5) - 5(0,2)) i

(3.61)

Ignoring fourth and higher order terms this reduces to:
R(GA(0) = Gr(®)} = [ S(.22dydz — [ S5+ 0)8(2)dydz. (362
A, A
After substituting equation (3.53) faf(y, z) the first term at the right hand side reduces to

7R?*n?/2. The second term can be converted to a solvable double @tegchanging the
integration variables te, andas (see figure 3.5). This gives for the second term:

4772 5 Tmaz .
S [T e 2ot an 1= ) R o (1 2P Ridradas,
0 0
(3.63)

wherez = 6/2R andr,,q, = RyV1 — 22 sin? s — Rz cosas. This can be rewritten as
-n?R%f(6/2R) where:

T pV1-z%2sin?a—zcosa 5
f(z)= 4/ / r\/r4 —2(222cos? a+1—22)r2 4 (1 — z2)"drda.
o Jo

(3.64)
The inner integral can be solved by changing the integrahlste tor? and realizing that
the integration over? can be extended tb— 22 if the real value of the result is taken. This
yields:

f(z):2(1—22)—22/%200s2a(1—22—|—z2cos2a) In 1—&—1_722
2 0 22 cos? a

}da. (3.65)



28 Chapter 3. Propagation in the sample

Form
factor

§/2R

Figure 3.7: Real space form factor of a sphere as functiohefeduced probing distance
0/2R for several values the phase acquired by a neutron passmggtmna sphere diameter
of sphere materiat). Full line: n < 1; long-dashed liney = 7; short-dashed line; = 27;
dotted line:n = 37 and dashed-dotted ling:>> 1.

This integral can be solved by splitting is into its terms ahdnging the integral variable
to 2« or 4« After some lengthy calculations this yields:

f(z):w{<f+1> V1-22 - (1—24—2> 22In (@)} (3.66)

4 2

so that the form factor equation (3.55) in the kinematictib@comes:
2

the same as was given by Krouglov [25]. In the kinematic lithé form factor does not
depend om, only on the radius of the sphere. This is shown as the fudl imfigure 3.7.
With increasing; the form factor is decreasing shown as the dashed lines ifigines. If
n is of the order o2~ it starts to oscillate around its value fgr> 1, represented by the
dashed-dotted line. The oscillation is shown for two valofes in the figure. Hence, when
1 becomes of the order af or higher significant deviations occur from the kinematiaiti
For large value’s of) it can be shown that the form factor reduces to:

Fros(6) = 1+ 2n2K:(2nz)  asinz) +2v1 — 22’ (3.68)
2 s
wherez = 6/2R and K (z) is the first order Bessel function of the second kind [26].sThi
equation describes the form factor quite well except fordkelllations in the tail. This
function is shown as the dashed-dotted line in figure 3.7 eNlwdt for large radius of the
spherez will in general be much smaller than 1 and the last two ternmslbeaignored. In
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Figure 3.8: Real space form factor of a copper sphere asifumet the probing distancé
for several values of its radius. Full line:im; long-dashed line: &bm; short-dashed line:
10 um; dotted line: 10Q:m and dashed-dotted line: 100tn.

figure 3.8 the form factor of a homogeneous copper spher@grsfor several values of its
radius. Within the shown range the form factor is constanlkeige radii of the sphere. The
form factor is then determined by refraction at the sphexar§ace only. One can use Snells
law to determine the refraction of neutrons at the surfadcbegphere in the same way as it
was done for wires by Plomp [27]. Then the same result is found

The phase-object approximation holds for both Born appnaxion and refraction. This
is due to the large correlation lengths of the objects ragpin scattering under very small
angles, down to several micro-radians.

One can related the form factor to the polarization meashyeal SESANS instrument.
SESANS measures the polarization of the neutron beam asdord the spin echo length,
lse [15] (see also chapter 5):

lse = cA\’BLcot(6,)/2m (3.69)

wherec = 4.6368 x 10'* T-!m~2, B the magnetic induction at the position of thg2-
flippers, L the distance between the magnets of one spin echo @rriie angle of the
interfaces of the precession regions to the neutron beam ratto of the measured polar-
ization and the empty beam polarizatia®, is proportional to the real part of the spatial
coherence function:
Pllse) _ R(Gr(lse))
PO(ZSS) 8%(GT(O)) ’

so that the form factor is equal to the shape of the normajipéatization:

P(lse)  P(o0) (. P(x)
Po(lse)  Po(oo) (1 Po(oo)> Flse) - (3.71)

(3.70)
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The amplitude of the change in the normalized polarizasogiven byl — P(o0)/ Py (o)
equal tor {G,(0) — G, (c0)} /G, (0), which for a sphere is :

P(c0) _ 1,
L= B 27 (3.72)

which in the kinematic and refraction limit reduces to:

1.2
Po(0) — 21 n <1,

(3.73)

_ Plo) _
1- & =2 >

Note that for the refraction limit this amplitude becomeagéa than 1, effectively reversing
the polarization of the incoming beam for very large valwé#'the spin echo length..



Chapter 4

Propagation of polarization

To calculate instrumental effects on the measured couatimatase of polarized neutrons
one should have a rigorous definition of polarization andsuesment methods. For this
the concept otoherence matrixs introduced. Although it is not a new concept in cohe-
rence theory [1], it has not been applied to propagation ofrmes. Matrix calculations
are well known to determine the change in the polarizatiariore These calculations are
more or less based on the solution of Schrodinger equatdrribe spin-expectation val-
ues. The components of the polarization vector are 3 pattecf-parts Stokes parameters.
The fourth part is the beam intensity. Together the Stokearpeters perfectly describe
a quasi-monochromatic beam at a certain position. They ewfail to indicate how the
polarization or intensity of the beam is propagated. Thesoeice matrix facilitates this.
A further advantage of the coherence matrix over the Sto&esnpeters is that the relation
between non-magnetic scattering and the quantum natureudfam scattering phenomena
is not blurred and it can be incorporated in the coherenaayhe

4.1 Definitions

For particle wave functions, where interaction with magneand electric forces can not be
ignored, Dirac [28] was able to reduce the time-dependemtigiinger equation using two
linear dependent solutions. The same procedure is folldavédd the equation for neutron
wave functions, where in general electric and gravitatifor@es are ignored:

m% ( $f§§g ) - {—h—2v2 V() —gruNE-é(f’,t)} ( $f§;2 ) 4.1)

2m )

whereg is the Pauli spin matrix vector (components as shown in éguét.5)),V (7) is the
complex nuclear optical potentiaf, the gyro magnetic ratigsy the nuclear magneton and
E(F, t) the magnetic flux density [5]. The linear dependent solstibh (7, t) and ¥~ (7, )
represent respectively thg spin stateanddown spin statg@art of the wave function. The
quantityg,un B(7, t) is known as the Zeeman energy as it gives the energy gain®pfos
a neutron experiencing a magnetic flux densityu(v ~ 60.3 neV/T). The Zeeman energy

31



32 Chapter 4. Propagation of polarization

must be compared to the total kinetic energy of the neutreergdys?%2/2m (~ 20.5 meV
for neutrons with a wavelength of 0.2 nm). For moderate \@bi¢he magnetic flux density
of about 1/3 T, the Zeeman energy is 6 orders of magnituddenthain the kinetic energy.

If, as in the previous chapter, a uniform quasi-monochranveell-collimated and sta-
tistically stationary beam is considered one can defin@ th& coherence matrix

f(Fl,F2,7)=<< é’f%iig )( WHELT () )> )

t

which can be reduced to:

=)

F++(F1,F2,T) F+7(F1,F2,T) ] (4 3)

(71,72, 7) = { T (7, 71, —7)* D (7, 7, 7)

wherel' ™ (7, 7, 7) is the mutual coherence function of thpstate of the wave function,

'~ (7,7, ) the same of thelownstate and™*~ (7, 7%, 7) thecross coherence function
of the two states. As was already noted by Mezei in 1980 [9pthiarization of a neutron

beam can be interpreted as the degree of coherence betveagawé functions representing
the two spin states of neutron. Then, tbeal polarization is defined as:

E >>f (4.4)

where the indey denotes the, y or z component and; are the Pauli spin matrices:

~ 0 1 ~ 0 —i ~ 1 0
O'm—<10>70'y—<l. 0>andaz_<0_1>. (4.5)

The polarization vector at some positisnan be described by the elements of the coherence
matrix:

<( WHE L U(F )5 < Py
(W, )W (1)), + (U (7 ) (7,

P;(r) =

—» 1
P(7) = ;
(’r) F++(Fa7_‘20) + F__(Fv ’Fv O) F++(7?

T+ (77,0 |. (4.6)

or in short notation:
| 4.7)

-~

where again the index denotes ther, y or = component and Trd) denotes the trace of
matrix A. This can be reversed into:

(7, 7,0) 1 (A ~ ~ ~
B (T4 Pu(R)5. + Py ()5 —|—Pzraz). (4.8)
T CERE (732 + Py (73, + Px(7)
Note that the polarization is fully known if the coherencetrixais known, but not vise
versa.
Although for insight in the design of an instrument or expeit it can be useful to
examine changes in the polarization vector for a neutrosipgslong a certain path through
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the instrument, this view is not sufficient to understanghalisible effects. For instance, the
neutron flux is given by:

J(7) = 20, Tr(I(7, 7, 0)). (4.9)
As in equation (2.3), is was assumed that the beam has the diegngon asv, for both
up and down spin states. In general this is not the case asnicigle the up and down
spin states can propagate through a magnetic flux densitifénesht directions (see section
4.6). However in most practical cases the coherence lesgitoi small or the spread in
directions too large to observe the beam splitting and tlevalapproximation is valid.
This was already stressed by Mezei in [9] and [29].

4.2 Propagation of coherence matrix

If the magnetic flux density and complex optical potentiat@mstant in time, the wave
equations for the coherence matrix can be derived from tredinition (4.2) and the above
Schrodinger equation:

V2T (71, 7, 7) = —L (71, 72, 7) {k(m2f+ k()2 (G - ﬁB(q))} , (4.10)

~

VAL, 72, 7) = = {R(2)2T + w(72)? (5 - i (7))} T, 72, 7), (4.12)

wherek(7)? = k2 — 2mV (7) /12, k(7)% = 2mg,uy B(7)/h? and] is the2 x 2 identity
matrix. 7i(7) is a unit vector in the direction of the magnetic flux densiy7"). These
two equations describe the propagation of the coherenaéxnaaid can be solved given a
certain profile for the magnetic flux density and complex cgdtpotential.

In most cases where the magnetic flux density is generated dnyascopic objects
k() < k(7) the propagation will be determined mainly by the first termtteé above
equations and the difference between the propagation @l¢ments of the coherence ma-
trix is very small. To underline the difference the reduceterence matrix s is defined
as:

F(Fl,FQ,T) :FO(Fl,'FQ,T)aB(F17F2,T), (412)
wherel'y(7, 72, 7) would have been the mutual coherence function of the wavetiftm
when all magnetics flux densities were turned off and obegsiwhve equations for the
mutual coherence function for the non-magnetic wave foncti

V2To(71, 72, 7) = —k(7)*To (71, 72, 7). (4.13)

Note that the polarization vector can be calculated diyeftdm the reduced coherence
matrix. Let the vectok( ) be defined as:

61110(7_"1,7_"2,7') = —iE*(Fl)Fo(Fl,FQ,T). (414)

The complex conjugate is used because of the definitidih géquation (2.6)). Then also,
beC&US@()(Fl, FQ, ’7') = ].—\0(’172, ’171, —’T)*:

62110(7_"1,7_”2,7') = iE(FQ)FO(Fl,'FQ,T). (415)
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For a slowly varying complex optical potentiﬁj : IZ(Fj)‘ < k() ~ |k(7)) it can
be shown that:

. \2
1R(T ~ o o ~ o o
(21) ’YB(’I"l, T2, T) (U : ’I’LB(Tl)) ) (416)

=

(7F1)* - ViAp(71, o, T) = —

=, > L S ’ili(FQ)zA_, N ~ m o

k(7o) - Voyp (71,72, T) = (0 -7ip(72)) VB (71, T2, 7). (4.17)
Equations (4.13), (4.16) and (4.17) describe the propagati the coherence matrix. The
mutual coherence function of the unpolarized beam, witletaction with the magnetic
flux density,I'y propagates as discussed in chapter 2. Note that in the tlenva this
conclusion it was assumed that the Zeeman energy was mudlestnan the kinetic energy
of the neutrons. This implies that the reflection of the nmudrat any transition in the
magnetic flux density is neglected. Note that the diffeedmtuations (4.16) and (4.17) are
not independent dfy, because of the definition (4.14) 5(?). In the following section the
propagation ofy is discussed.

4.3 Constant magnetic flux density direction

For some region in space where tlirzctionof the magnetic flux density is constant one can
always make the spin-quantization direction equal to thisction by appropriate rotation
of the reference frame [30]. Rotation of the reference frénm@ the z-direction €) to the
direction of the magnetic flux density,

cos ¥ sin 0
sin sin 0 (4.18)
cos

St

B

transforms the coherence matrix through:

~ ~

Tyt (71,72, 7) = Rigy ) D (71, 72, TV RE s (4.19)

whereR! represents the conjugate transposéafndﬁﬁ =1, (G)T (¥) and

~ T in L e iT/2
o= ( 0k i) aa - (0 L) e

— S 3 COS

For the region of a magnetic flux density in the or quantization- direction the equa-
tions (4.16) and (4.17) reduce ta£ = €):

. (=22
- e = N ww(T)° . -
k(Tl) .vl’yB(Tl,Tg,T) = — (21) ’yB(Tl,Tg,T)UZ, (421)
= - L Z.I*i(_’g)2/\ N
k() - Voyp (1, 72, T) = 5 0B (71,72, T). (4.22)

For a completely coherent and homogeneous beam in vaél(lﬁm: ki, is constant and
the solution of these differential equations is given by:

(71, 7o, 7) = To(b(rh, 7) A5 (7, 7, T)TL (0(r], 7)), (4.23)
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75, and

I A P
wherer; —r; = ”FJ T

$(r,7) = k™ / (72dr = 29w [ B(F)dr (4.24)
hk 7

is a measure for the extra phase acquired by the neutron waggdn due to the interaction
with the magnetic flux density and closely relatecbtas defined in equation (3.25).

Equation (4.23) shows that the propagation of the cohereratex from one position
to another through a magnetic flux density with constantctiva can be calculated by
means of the line integral representing the extra phasdrachy a specific neutron (up or
down spin state) when traveling from the first position toltg position along the classical
neutron path. Combining equation (4.19) and (4.23) for dorewith constant magnetic
flux density directiorti g results in:

o~
~

Ap(F1, 7, 7) = M(Fay ) 3B(7, r, T)M (71, 7)1, (4.25)

WhereZ\/l\(F,ﬁ) RHB(F) L (B(r, F))RA (7 The most general form of this matrix is a

rotation matrix, 4, some of which properties are discussed in appendix A. Iridhew-
ing sections these properties are exploited together WwéHdct that a trace of a matrix is
invariable to cyclic permutations and that the trace of a sfimatrices is the same as the
sum of the traces of these matrices.

4.4 Larmor precession

In a region of lengthl, where both the direction; and the magnitude of the magnetic flux
density,B are constant, matrid/ as defined in the previous section is given by:

M = R;'T.(cABL)R;, (4.26)
wherec = —4mmg,uxn/h? = 4.63209 x 104 T-'m=2, This equation can be rewritten as:

— ~ L

M:Icosry

v Btr,
2 9

L i (neGy + ny3y + n.0.)sin (4.27)
wheret; = 2L /v, is the travel time of a neutron with wavelengththrough the region
of magnetic flux densityy;, = —2g,un/h = 1.832472 x 108 T~1s~! andy;, B is known
as theLarmor frequency, independent of the wavelength of the neutrossshdwn in ap-
pendix A this matrix can be interpreted as a rotation of thiaqimation vector ofy, Bty
radians around the direction of the magnetic flux densitys i&why this type of propaga-
tion of the coherence matrix is know Barmor precession
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Figure 4.1: Sequence in space of magnetic flux densitiegsepting a space dependent
magnetic flux density3 (7).

4.5 General magnetic flux density

If between” andr’ the direction of the magnetic flux density changes too mueb {(&g-
ure 4.1) the region betweehandi” can be divided intaV regions where the direction does
not change appreciable. The mathik(7, F’) in equation (4.25) must be replaced by

D@, 77) = [[ Mi(Fisr. 7), (4.28)

wherer; = ", N1 = T, 75 indicates the border between regioendi + 1 and the matrix
Z\Z(Fiﬂ ,7;) describes the propagation of the reduced coherence matggion:. Matrix
D is called a device matrix as it describes the influence of €gron manipulation device
on the propagation of the coherence matrix. Note that asisncéseD is a product of
rotation (or streaming) matrices only, it can also be regméad by a rotation matrix.

For a constant magnetic flux density and optical potentelgtopagation of the cohe-
rence matrix can also be derived in the way shown by Mandeb[@btain equation (2.26).
The procedure applies twice Rayleigh’s first diffractionnfizila and uses the definition of
the mutual coherence function. Rayleigh’s first diffrantformula describes the propaga-
tion of a wave function from a plane. Here one must take intmant that the wavevector
of the up and down neutron wave function is different, duderhagnetic interaction. This
yields for the propagation of the coherence matrix wiRen> \:

cos 01 cos Oy ~ < = =~ 2.1 52
NGRRS // R COSTL 082 1 (Ry)T (rfl,rg,T)Tk(Rl)Td AP, (4.29)

R Lt ikt R 0
Ti(R) = ( eo - ik R (4.30)
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andk* = (k?£x?)'/2. k' represents the (average) wavevector of the up spin wavaliglar
to the magnetic flux density) arid” the same for the down spin wave. Because k it is
possible to expank™® ask =+ dx, wheresx = x?/2k and use the approximation:

Ti(R) ~ ke T, (5K R). (4.31)

Then the above equation reduces to:

~

L(7,72,7) = (4.32)

cos 0 cos fyetk(F2—H1) - = ~
//T . ! R11“2325\2 T.(6kRy)T (r’l, rh, 7) T. (6K Ry )T d®ryd*r,.
If the transversal coherence length (see section 2.2) afig¢hgron beany;, < 6+~ ' and
the far-zone of the field is considered (see section 2.5) ieices just before and after the
coherence matrix inside the integral do not depenﬁpandﬁg and can be put outside the
integral. The integral then gets the same form as the prajpagategral equation (2.35) of
the mutual coherence function. It can be repeated over qubséregions in space where
a (different strength) magnetic flux density exists, so thatarguments of the matrices
before and after the integral are converted into a sum oVeegibns which is equal to the
line integral as defined in equation (4.24). Hence, the abquation can be rewritten using
the definition of the reduced coherence matrix into:

:Y\B(Flv"?QvT) =
=N 71’67‘121" ’I"_; 7 =~ 7,_”7,’ d2 d2,r./ =N .
T (¢(T’2,F2)ff7. 0 Ogal 2 7;) ?( 172 ) 2Tz(¢(7'/1,7?1)1—, (433)
ff, o € 2T (1Y, 1), 7)d2r d2rY
whererygs = 7% - r72/r2 7"1/7‘1 If 55(r'1,772,7) on thex = 0 plane does not depend
onr’, or ', it reduces to.
T (R, 7o 7) = To (S, P2 A5 (71, 72, ) TL (6], 7)1, (4.34)

the same as equation (4.23).

One can extend the above reasoning to the general case Wheragnetic flux density
variesslowlyin space. Slowly means that the changes in the magnetic flusitsieare on
a scale much larger thaix~!. In this situation the matrices before and after the cohe-
rence matrix in equation (4.32) are converted into matr@oesrding to equation (4.28) and
equation (4.32) changes to:

D(7, 7, 7) = (4.35)
cos 0 cosfpeik(Be—R1) . . o
//7_0 Ry Ry \2 D(,m5)I (7‘/1,7‘/2,7') D(7y, ) d?ryd?r),
reducing in the far-zone limit to: ~
D(7, 72, 7) = (4.36)
0 2] ik(ro—r1) = N L
SR TR e // eﬂ’””D(FmTé)F (7“/177“577') D(Th )Td2 Ld2r).
7’1’1"2)\2

Itis also possible to calculate the device mafbixf the magnetic flux density changes in
a specific way. This was done by Schwink and Scharpf [31] &ichl magnetic structures.
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Figure 4.2: Polarized beam splitting by a region of constaagnetic flux density.

They found that in these cases the up and down spin stateagatgboth with the two
wavevectors:+ andk—. The propagation reduced to a propagation with one waveréct
the quantization axis is continuously rotated and takengatbe direction of the magnetic
flux density.

4.6 Beam splitting

In case the direction of the magnetic flux density in someoregs parallel to a fixed-axis the
propagation of the coherence matrix can be calculated ditgpto the previous section. If

a neutron beam propagates along:tkexis and the boundary of the magnetic flux density is
not perpendicular to the propagation direction, so-cdieain splitting is observed as shown
in figure 4.2. The propagation of the coherence matrix isrgivg equation (4.32). The
propagation of the two diagonal elements of this matrix ammgarable to the propagation
of the mutual coherence function as given in section 3.4.réfraction index is now given
by n* = 1+ §x/k, where+ denotes the up-spin wave andthe down-spin wave. The
refraction angle (see figure 4.2) = x/kcotd. For a magnetic flux density of 1/3 T,
0 = 45° and a neutron wavelength of 0.2 nm~ 0.5 yrad. The down-spin wave is
refracted at the boundary with an angle exactly opposited¢@he of the up-spin wave. The
off-diagonal elements of the coherence matrix propagatedrsame way, but have an extra
phase shift obx(Ry + Ry). If Ry + Ry > dx~! the value of the integral reduces very
fast to 0. To observe beam splitting it is needed that equdfd2) can not be reduced to
equation (4.34). This is the case when the transversal enbelength is of the same order
or larger tharx—! as shown in the previous section. If the transversal colverlangth

is much smaller thaix~! the splitting of the beam can be neglected and equation)4.34
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can be used to calculate the propagation of the coherencxnidbte that the transversal
coherence length is also a measure of the divergence of ta fgee section 2.8). The
larger the coherence length the smaller the beam divergéterese the minimum coherence
length required to observe beam splitting can be transiatedhe maximum allowed beam
divergence to observe beam splitting. Clearly the beanrgree should be less or of the
same order as.

4.7 Polarization analysis

A typical layout of a neutron polarization manipulatingtimsnent is shown in figure 4.3.
The source can be a reactor or pulsed-source, producingarizeal neutrons. The polarizer
and analyser are devices which preferentially transmitgpie state over the other. The
polarizer creates a polarized beam and the analyser is asahlyze the polarization of the
beam at the exit of the instrument. Here, it is assumed tleadéivice matrix of a polarizer
can be characterized by two functions: the polarizing paieand the transmissiofp:

Dp(,7) = [ L20h ) ( L+ Pp(r',7) 0 ) , (4.37)

2 0 V1= Po(r, )

and the same for the analyser with subscftpteplaced byA. Note that the matrix in this
equation isnota rotation matrix except iPp (', 7) = 0.

For a directed quasi-monochromatic beam the neutron flukeatletector position is
given by:

— ~

J(Fd) = QEPTr(F(de ’de 0))7 (438)
which with equations (4.12) and (4.36) can be reduceddod; = cos s = 1):
- 27,
J(Tq) = 2 (4.39)

7

J [ e ol 0T (W R AT 1)) i,

z
Detector
X y
Neutron neutrons
Analyser . : Polariser| <——
manipulation |
(o]

Figure 4.3: Scheme of neutron polarization manipulati@trirment.
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wherep = IEFd/rd and MM is the matrix describing the whole instrument:

o~ ~ — -~ -

M (74,77) = Da(Fa, 7)D(Fa,7) Dp (74, 77), (4.40)

<

and D the overall matrix of the neutron manipulation devices lestw the analyser and
polarizer. Remember that the matm/)i(ﬁ, 7o) can be calculated as a product of matrices
corresponding to regions with a constant magnetic flux dgesicountered by the neutron
traveling in a straight line forn to 7. Further, if the neutron source is unpolarized:
ﬁB(ﬁl, 772,0) = I /2 yielding:

e POL D (0 1, O)Tr (M (7o, )M (7 1)) dPrir

(4.41)
The neutron flux at the detector position can be calculatad the elements of matrix/
describing the spin-manipulations i in; the instrument. Tlad¢rixdescribing the act|on of the
analyser on the neutron splﬁ)A(rd, ) will in general only depend slightly on'. Over
ranges within the coherence length it will be constant. léenc

D4 (7r 1D A 7 I+ Py(Tq,r
Da(ras ) D7 ) = Dl )P ) = Ta(r i LA r1)02
(4.42)
and the same holds for the polarizer. Now equation (4.4%)dhin be rewritten as:
S 2,
J(7y) = ;’2 (4.43)

[ e POl o zal i el F R L )
=0

- Tr<I+PA(Fd,r’1)E B )I+Pp(rd,rl)3

Q7,7 1)) = 5 5 B(Fd,ﬁl)*> . (4.44)

One can insert flippers just before the analyser and direétty the polarizer. The manlp-
ulation of a flipper on the polarization can be represented tmtation matan(rd, ) for
which holdsF (7, ) F(7,7)T = 1. Such a matrix will in general only depend slightly on
7. Over ranges within the coherence length it will be consaaoit” (7, r2)F(rd, rl)T =

The matricesD transform to:

DI (7y,17) = Fa(Fg,7)D(7g, ) Fp(Fy, 1) (4.45)

and

D(7g, 7)h. (4.46)
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This enables the definition of thleshim neutron fluxf§4)(Fd), 4-flip neutron quxf}‘L) (7a)
and4-measured polarizatioﬁ’,(f) (7a):

Jon(Fa) + Tug (7a) + TpuFa) + Jr5(7)|

T (7a) = 7 : (4.47)
o [T F2) = Ty ) = TyuF) + Ty (7))
Jf (Td) = 1 (4.48)
and W
J; (T
P ) = 2T (4.49)
Js " (Ta)
where the indexeg andn indicate when the flipper isn or off. For perfectflippers
Fa5.F = —5. and the same fof» so thatJ{") () is given by equation (4.43) with
Q replaced by
QW (7, 7, 1) = iTr (DG, ) D7, 1)) (4.50)

independent of the polarizer or analyser properties. Utlieisame conditionsIJ(c‘L) (7a)
becomes:
T () = (4.51)

[ ] e DR 0T DT DD G ),
=0
where

L =2 = 1 - L= PN SN
Qfﬁ) (Fa,ry,1h) = ZPA(rd,r’l)Pp(rd,r’l)Tr (UZD(’I“d,T/Q)O'ZD(Td,Tll)T) ) (4.52)
Sometimes instead of using 4 quantities the shim and paléiz are determined by 2
quantities. The-shim neutron flux2-flip neutron fluxand 2-measured polarizatioare
defined as:

TP (7g) = L—r : (4.53)

T () = - (4.54)
and @
IO
P(ia) = fz)( 05 (4.55)
s (Ta)

where the indexeg or n indicates when a flipper isn or off. The flipper can be either the
one just before the analyser or the one after the polarizehelflipper at the analyser is

used and assumed perfe%l?) (7y) is given by equation (4.43) with replaced by

I
/ —”Pp(”’rl)"Z) (4.56)

T | N N,
Q@ (7t 1l = §Tr (D(rd,rfl)fp(rd,r2) 5
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Under the same conditionL‘}z) () is given by equation (4.51) Witlﬁlsi)(?d,r_’i,r_é) re-
placed by:

+ o Paut)e (A i a2 T+ Pp(fa,r)5.
0 (7 7,7 = TATR T ) gy (D(Fd,ra>*azD<fd,rg>w> - @57

Equations when the flipper is at the polarizer side can beein a similar manner.

Note that in general the different definitions of shim nentflux and measured po-
larization give different results. In a special case howetey are the same. If ma-
trix D only slightly depends om’, then within the coherence length it will be constant:
f?(Fd, r_’;) ~ f?(Fd, r71). If aIsof?(Fd, 1) can be represented by a rotation matrix:

1 1+ PD(Fd,ﬁ)eiO‘D(Fd’ r iy/1— PD(’de’l:;)eiﬁD(Fd’ ') (4.58)
V2 i\/1— PD(’Fd,’I:;)e_i’BD(Fd’T ) \/1+ PD(Fd,ﬁ)e_mD(Fd»T/) 7 .

thenQ" (7, 77, 7%) = Q) (74,7}, %) = 1 and the shim neutron flux is independent of all
neutron manipulation devices. AlsY andQ(? are reduced to:

|~

<~

L 703 L 703 1 I L 7 L7
(Fa, 1y, 1h) = QE,Q,) (Fa,ry,1h) = EPA(rd,r’l)Pp(rd,r’l)PD(rd,r’l), (4.59)

Qg
describing the loss of polarization due to the neutron maatpg devices. In this case
beam splitting is ignored and the polarization and neutrendf the beam between analyser
and polarizer are completely independent. Then, the infleiehthe magnetic flux density
can also be described by means of its influence on the wavéidancepresented by two
plane waves (up and down spins state) directed along theicdsieutron path through
the instrument. In the semi-classical approximation tlises down to determining the
precession of the neutron spin along its travel throughriegument [30].

4.8 Scattering

The propagation of the coherence matrix through the sanapi®e determined by coupling
the scattered coherence matrix to the incident coherent@mén general one can state
that:

Loy, 72, 7) = Mac(72)Din (71, 7, ) Mao (7)1, (4.60)

where]\//fSC is called thescattering matrix Following the reasoning of section 4.2 one can
split the scattering matrix in a non-magnetic part and a reégipart. Using the phase-
object approximation (section 3.3) one can write:

—

Mio(7) = 5O H,, (7), (4.61)

whereﬁm is a rotation matrix describing the magnetic part of thetscaig matrix. In case
of only non-magnetic scattering this is just the unit mathixcase where the magnetic flux
density in the sample is everywhere in the direction of thangation axis this is just a
matrix T,. Then the argument of this matrix is the extra phase diffezdretween the up
and down spin state acquired by the wave after travelingitiiidhe sample.
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Equations (4.7) and (4.8) can be used to relate the polemizdirectly before and after
the sample:

Tt(Cee (7, 7,0)) = SO =" OTT,,, (7,7, 0)) (4.62)
and
P’r,sc(F) o P’I' ,in (’F)
RJ,SC(F) =D y in (“) ) (463)
Pz,sc(F) Z Zﬂ(_)

whereD is called thedepolarizatiormatrix and given by its elements:
Dji, = —Tr( (F)akH (715;). (4.64)
If the scattering matrix is presented as:

ﬁm — TcosO +i (ngOz + nyoy +n.0,)sind, (4.65)

the depolarization matrix becomes:

R 1 0 0
D=0 10 |+ (4.66)
0 0 1
nz +n2  —ngny, —ngn. 0 —n. ny
—2sin? 0 nyng nZ+n? NyN2 + 2sinf cosd N, 0 —ng
NNy —NMy nz + ni —Ny  Ng 0
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Chapter 5

Spin echo small angle neutron
scattering

5.1 Introduction

A neutron spin echo instrument consists of two regions whieeeneutron spin precesses
depending on some property of the neutron and its path thrthese regions. For con-
ventional spin echo the important property that is codedaésteutron wavelength enabling
inelastic measurements with a high time resolution. It$® gdossible to code the angle of
the path a neutron has taken through the precession redibagotal precession is propor-
tional to the difference in angles of the path through the fegion and the second region.
This is called Spin Echo Small Angle Neutron Scatterin@BSANSDetailed information
can be found in for example [15] or [16].

The basis for this technique was first discussed by Mezei ir2]32] and Pynn in
1978 [33]. Keller [34] showed in 1995 it could be used for dnaalgle neutrons scatter-
ing and Rekveldt [15] was first to consider the mathematieakiground of the technique
in 1996 and introduced the SESANS correlation function disbeidiscussed later.

An example of the coding part of a SESANS instrument is showfigure 5.1. Regions
| and Il are parallelogram shaped regions with approxinyatieé same lengthé; and
L-. The dependence in thedirection is ignored. In region | the magnetic flux density

Region | Sample Region Il

Figure 5.1: Principle of SESANS precession coding.

45
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Rotator sample Rotator Detector

B
i

Source Polariser Region | Region II Flipper Analyser

Figure 5.2: Principle of complete SESANS instrument.

(B1) is constant and parallel to theaxis. In region Il the magnetic flux densitys{) is
approximately the same exceptin the opposite directionsi@ethese regions the magnetic
flux density is supposed to be 0. The inclination angle betwegion | and the:-axis is6;
and for Region 1165. After interaction with the sample the angle the neutror patkes
with region Il is changed b¥... The influences on the propagation of the coherence matrix
in regions | and Il are given by equation (4.23) where termseabnd and larger order éh
andf;; are ignored:

¢r(r,7) = —cAB1L1(1 — 01 tan 6;) (5.1)

and . -
or1(r',7) = cABaLo(1 — 617 tan 6s), (5.2)

wherec = 4.63209 x 10'* T~'m~?2 as defined in section 4.4. Hence, the device matrices for
the regions | and Il are given K. (¢; (17, 7)) andT% (¢;; (7, 7)). If the sample scatters non-
magneticf; = 6, andB, L, = B> L, the device matrix for the combination of region I, the
sample and region Il |SJu§f (Ise - Gse ), Whereg,. is the wavevector transfer at the sample
position, the direction of.. is the coding direction (he@®,) andls. = cA\?B; Ly tan 6 /27
is called thespin echo length

For a complete SESANS instrument the coding section is gdhteowhole instrument
(see also figure 4.3). This is shown schematically in figue S he neutrons from the
source are transmitted through the polarizer and the rotatates the polarization vector to
they-axis. This corresponds to a device matrix which consistrotation matrix,R(ﬁ, 7).
Then the neutron propagates through regions | and Il andoadeotator which reverses the
previous rotation, so its device matrix is the inverse (antigan adjunct) of the previous
one R(r 7)t. Then the neutrons move through a flipper and analyser tdepalarization
analysis. Now, the device matrix between polarizer anddlipp given by:

E(F,r7) = R #) T 11 (7, 7)) Mo (7, 7))o (61 (7 M) RO, 7). (5.3)
Note that without a scattering sample this matrix reducethéoidentity matrix. If the
scattering is non-magnetic this matrix reduces to:

-~ -
/!

BE(7, ) = lS(F)R(r AT (e - Goe) R, 7). (5.4)

The polarizing factor o@( r')is

) = (L= PR ) cos {e - Guc | + PRO7.7), (5.5)

-
/

Pg(7,r
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yl

Source

Figure 5.3: lllustrating the notation relating to the saifar-zone showing the definition of
the used symbols.

where Py, is the polarizing factor oﬁ(ﬁ, 7). For a perfect spin echo instrument the factor
before the cosine must be maximal and the other term minmealgel’; = 0.

5.2 Non-magnetic scattering

Assume the neutron beam is homogeneous and unpolarizee bleéopolarizer and can be
represented by a coherence matrix:

fo (TZ/,T_/Q?,T) =T (O,T_’”,T) f/2, (5.6)

wherel’y (O, r7’, 7-) is the mutual coherence function at the source positionnThe dif-

ference in distance between 2 points in the source planenangdints at the sample plane
is:
’I"// — ’f'/ . §0 — §1
Ry — Ry =~ ( ) ), (5.7)

T's

wheres) is the component in they, ) plane at the source position of the first point at the
source sy + " the same of the second point at the sousgas the componentin thg, z)
plane at the sample position of the first point at the samptesant 7 the same for the
second point at the sample andthe distance along the-axis between source and sample

TN 512
(see figure 5.3). The approximation holds as long PS’ — r" L 7.

Using equation (4.35) in the far-zone limit aagk 6; =~ cos #> ~ 1 the coherence matrix
at the sample position becomes:

~ oL = 1 . L= ~ 5 o~ o o
Fin(slv S1 + TlaT) - ﬁ Rzn(qO - qlarlvT)WP(T/DTlll)WP(T/pT/l/)Td2807 (58)
s JAp
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yl

Detector

Figure 5.4: lllustrating the notation relating to the saenfar-zone showing the definition
of the used symbols.

where

—iq-r’

/_\2

o (&
Rin(Qv’r 77_) =

/ e Ty (0,17, 7) dr" (5.9)
Ao

andgy = ksj/rs, 1 = k51 /rs andWp (7, 7) = Mp(71,7)Dp(7, 7). For a complete
incoherent source (see section 2.6):

~ J e—il_cvp‘re—i(j"r_;
Rin(§,17,7) = = (5.10)
p

The difference in distance between 2 points in the sampteg@ad one point at the detector
plane is:

Ry — Ry~ ———"%, (5.11)

whereg, is the component in théy, z) plane at the detector position of the point at the
detector and, the distance along the-axis between sample and detector (see figure 5.4).

1512
The approximation holds as long A$r/| < r4.
Using equation (4.35) in the far-zone limit aagk 6; =~ cos#> ~ 1 the coherence matrix
at the detector position becomes:

La(Fy, 74, 7) = —= X (5.12)

(req —a 'T‘_7A - -~ N - — R —
/ / oty @1 da) Wa(Fa, 7)) se (51,51 —|—r’,7) WA(rd,r’l)szsldQT’,
A, JA

wherelA“SC (“1, s+ ﬁ, T) is the coherence matrix just after scattering ane- l_c§d/rd.
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For non-magnetic scattering the scattering matrix (seatému(4.61)) reduces to the
identity matrix and the scattered coherence matrix is:

Tso(51, 51 4+ 17, 7) = SEH+=S GO, (5’1, 3+, T) (5.13)

The same as in section 2.7, the detector count rate is detedras an integral of the neutron
flux over the detector area. Using equation (4.9) this resltme

Iy = QUp/ Tr(L(7y, 74, 0))d>rq, (5.14)
Aqg

The neutron count rate in the detector according to thistemuaecomes, after changing
the integration order:
v
Iy = P x (5.15)
2Tr2i>\2

/ / / TR S - IR (670—671,73»O)X(ﬁaTzaTz/)d2T/d281d280,
Ao

where

X(T”Ti,TZ/)Z/ 67i§d'ﬁQd(Fd,TZ,TZ’)dQTd (5.16)
Ag

and
Qa(Fa, v, r7) = Ta(Fa, 75 Tp(r, r) % (5.17)

Tt Parar)o = 5 3 T4 P = 1
Tr( + A(;dﬂﬁ)o' E(_‘ 7 //) + P(Tlvrl)a E(—» 7 //)T)

andE (7, r71, r71’) = M\A(Fd, TZ)J/\ZP(TZ, r71/). In the following the transmission of the anal-
yser and polarizer is assumed to be constant. The shim catentan be calculated by
takingQy = %TATP so thatX can be replaced by:

4 7 TaTp 1?2
X7, = AL

e~ ida T g2q, (5.18)

where the integral o, over A, is replaced by an integral @f;. Now, if the detector
area is large enough the integral ow&y is just a two-dimensional Dirac-delta function
47253 (r"). This reduces the shim count rate to:

Up TATP

I, = r2 / / ei8(51)—iS” (51)Rm(q0 — 1,0, O)d Sld S0, (5.19)
Ao

which for a complete incoherent source can be reduced to:

TaTp Jy A()
4 4qr?

I, = G, (0), (5.20)

where
G.(0) = / et (F) =87 (s1) 2 g (5.21)
A

s
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is the sample correlation function fer = 0 as defined in equation (3.29). If also the
polarizing powers of analyser and polarizer are constathtiae matrix~ only depends on
the angle of the paths before and after the sample, the fliptcate can be calculated by
takingQ)4 equal to

. 1 .
Qp(Gse) = ETATPPAPPPE(Qse)y (5.22)

where Pr ({5 ) is the polarizing factor of the instrument between the fligpes given by
equation (5.5), for a perfect spin echo instruméat(qs.) = cos {fse . cfse} andqs. =
da+ Go — ¢ (rs/rq + 1). Now the flip count rate can be found by replacikidoy:

2 TATpPsP L s
X7,y = LA { oot east) [ i gy
Ag

2k2
(5.23)
where the integral of; over A, is replaced by an integral @f;. Now again, if the detector
area is large enough the integral ow&y is just a two-dimensional Dirac-delta function
4726 (77 — I,..). This reduces the flip count rate to:

Up TATPPAPP
———X

I[,=-2 5.24
{/ / 1S(s1+lw) is* (DR, (@ lgp,O)eifSE'((TO_‘Tl)d251d2$o},
Ao
the same as
TATpPAP,
If: Ug ALpIA P / / i5(51+lse)—iS™ (51 )Rin(%—fl,o,o)d251d280 .
s Ao
(5.25)
Assume a complete incoherent source, then this can be reflutkeer to:
TATp JoAg -
I; = PAP { z} 5.26
f AP44W§%G() (5.26)
The measured polarization becomes:
R{G. ()}
P,, = PAPp (5.27)

so that the measured polarization is proportional to thiepaa of the SESANS correlation
function. The correlation is measured in the coding diurdﬁe.

One should realize that the above equation only holds fdtesaag in the phase-object
approximation. A further limitation is that it holds for &teal spin echo instrument, where
the polarizing powers and transmissions of the polarizdraralyser are constant and the
polarizing factor of the instrument between the polarized analyser is proportional to
cos{l_;e - @sc }. If this is not the case one can try to solve equation (5.1%grmintly or by
means of numerical calculations.
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5.3 Magnetic scattering

Recently Grigoriev et al. [35], [36] have shown the posgipidf spin echo small angle neu-
tron scattering measurements foagneticsamples. For magnetic scattering the scattering
matrix should be incorporated. Here, it is assumed thatdhecs is completely incoherent
and the polarizing powers and transmissions of polarizéraenralyser are constant. Further
the rotation matrices before and after the precessionmediand Il are ideal and given by:

= 1 el e
R= E ( ,L-e—zﬂ e—ia ) ) (528)

so thatRo. RT = T.(2a + 2f3)0,. The detector count rate can be calculated according to
equation (5.15) wher€, is replaced by:

Tr(Hpn (51 + 7)) Hyp (51) 1)+ (5.29)

TATpPpPa
4

wheregy = ¢ — a— fandg, = ¢ + a+ [. Note that the second and third term contain
eitherg, or ¢o. As ¢1 and ¢, vary fast with the position and angle, these terms will not
contribute to the detector count rate. The integrals in gop#5.15) of these terms yield 0.
This also collapses the difference betweenakghim neutron fluand4-shim neutron flux
and the same for the flip neutron fluxes and measured polanzatlf the values ob; or
¢- are large enough the shim count rate is represented by theefing and the flip count
rate by the fourth term. Filling in equation (5.15) for themsttount rate and assuming the
detector area is large enough, gives:

Tr(T ( 2¢2)0'yHm(81 +r ) z(2¢1)ayﬁm(§1)f)a

TAT
L=~ ”p A P/ / eSEN=STE R (G — 1, 0,0)d?s1d? o, (5.30)
Ao

not dependent on the magnetic scattering, the same redalt@son-magnetic sample. To
calculate the flip count rate remember that any rotationisnaén be written as a matrix
sum of a matrix representing a rotation along thaxis and a flipping matrix. In this
case spin dependent reflection and absorption phenomeignared as follows from the
phase-object approximation. If these phenomena are tdba tato account the following
derivation should be adjusted. For now, the scatteringimaiy, can be written as a sum

of T, andF:
= P ) + T 2 Fe26) (5:31)

Tr(T.(— 2¢2)0y m (31 + )T, (2¢1)a, Hn,(5)1) = (5.32)

1 + Pm(§1 + 7?;) V 1 + Pm(gl) COS(¢1 + ¢2 + ’Ym(gl + 7?;) + ’Ym(gl))_

so that
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mmm(@ — b1+ 6m(51) + (5L + 1)),

The second term of equation (5.32) depends on the differéneeq;, which according to
equations (5.1) and (5.2) also varies fast with angle andipnsThis term also averages to
zero. Hence, again by filling in equation (5.15) the flip cowté is given by:

Up

I = e (5.33)

/ / / 0T SIS GO R, (G0 — 1,17, 0) X5 (7, 7 17 )dPr dP sy dPso,
Ao

where TP P
Xp(r ot o7y = 2222 AP 4 P (8 4 7)1+ P(51) (5.34)

/ COS(¢I + ¢II + ’Ym(gl + 7:;) + ’Ym(gl))e_iq'd'wd27‘d,
Aa

which after filling ing; + ¢ = loe Tser Gse = Ga+ qo — q@1(rs/ra + 1) and if the detector
area is large enough can be replaced by:

o TATpPAPp 4
Xp(rl o) = AL 7T”\/1+P (51 +7)V1+ P(51) (5.35)

R {ez‘z:e-(q*o—qq (ra/rat D) i (S1-417) i (51) §(2) (7 ﬁe)}

)

giving for the flip count rate for a completely incoherent smu

TaTp JoA o .
Iy = PyPp=2 p Jodo gy / ) H(5) + o) Ho (51) d?s1 b (5.36)
4 Amr? AL
where
14+ Po(7) ormos i
H,(7) = | L s @i, (5.37)

2

The measured polarization is determined by thretation partT. of the scattering matrix.

The flip partF is completely depolarized. If a flipper (represented by aifig matrix
(27)) is inserted between region | and the sample, the scattemaigx is replaced by

Hf = H F (27) which can be accounted for by replacement of the followingaides:

vap(F) = _Pm(F)a (538)
Vfp(T) = m(7F) — 7 —m, (5.39)
O5.p(F) = Y (F) + 7. (5.40)

This means that by flipping the neutron spin just before tiepda the correlation function
that is measured changes from fhiepart of the scattering matrix to th€, part. The same
holds for a flipper between the sample and region II:

Pf,a(’F) = _Pm("?)a (5.41)
Vf,a(F) = =0m(F) + 7+, (5.42)
8f.a(T) = =ym(7) + 7. (5.43)
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5.4 Magnetic scattering in domains

For a sample consisting of domains of some size and shapedktering matrix must be
calculated using the procedure shown in figure 4.1 of se@ibnwhere now each region
represents a single domain. Using equation (4.28) and firatén of the angle®; and;
according to equation (4.18):

ﬁm ('F‘) -

J

N
T () T, (0,) T (6)) T, () T2 (9;), (5.44)

where -

bj = —cB'(7j + i€ )N (i1 — x5), (5.45)
c = —4mmg.un/h?, the same as before aiti(7;) is thepseudomagnetic flux dens[t]
in domainy:

2\ 12
2T g N m c

wherep,,, (7) is themagnetic scattering length density that:
Equation (5.44) can be reduced to:

A Y sin(¢;/2)

Hu() =] {Icos<¢]/z> By (Bel@)Fa + By(a)F, + B;@j)aZ)},

j=1
(5.48)

where the dependence Bf on+; + ¢, is written asB’(z;).
Using the fact thatn,o, + nyo, + nzaz)2 = I, this can be rewritten as:

f‘) Hel_x Tj+1— t7) B (t7)‘7T+B (= 7)‘71/+B ('£7)‘7Z)7 (549)

which can be approximated when < 1 or7i; ~ 7, by:

1:_\[7"(,,:“) (gr( )0T+§1/(T‘)177/+§Z(T‘)az) (550)

9

where(}, is a measure for the average pseudomagnetic flux densite irrdirection along
the neutron beam:

T N
(=5 3 B 2o ~ ) = M gy, G5
wherek represents the indexesy or z. Equation (5.50) can be expanded to:
() = Teosg() + 4G (79, + 6,96, + ¢.7:) T5, (652
where((7) = /(. (7)? + ¢, (F)? + (. (7). Note that any rotation matrix can be put in this

form. The exact interpretation qf, ¢, and(, depends on the properties of the sample and
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the validity of the above or other approximations. The iefabetweer(,, ¢,, . andF,,,
Ym, 0 USINgG the notation of equation (5.31) is:

e Ccos( +il,sin( (5.53)
V€2 cos? ¢+ (2sin® ¢
eitm = S Y (5.54)
/GG
2
Pm =1- (Cy + CT)bH; C (555)
Now equation (5.36) becomes:
Iy = PaPp TAfP ij:g% {/A P.(51)H, (51 + fse)Hr(gl)*d2sl} ) (5.56)
nnere () cos C(7) + i, (7) sin (7))’
+ 10, sin (7
Po(7) = , 5.57
)= (P cost (7 1 G (PR sin? (7 (557
and s
H, (i) = <COSC(F) + i (7) —“&%ﬂ 'S, (5.58)

Note thatP,. does not depend on the spin echo length. If a flipper is inddrte= n)
between region | and the sample the flip count rate can be foynding equations (5.38)-
(5.40):

I; ;= PsPp T“‘fp ﬁf;% {/A P, ;(51)H, (51 + l:e)Hr(é’l)*dzsl} . (5.59)
h
e L (G(P) =iy (7)?
Py () = W7 (5.60)
d
o - o sin¢(51) ;s
Hy (%) = (G (7) — iGy(7)) 6 e, (5.61)

For spin echo lengths wheté, (57 + l_;e) ~ H,(51) and the same foH, ; this equation
can be reduced further. If also the nuclear scattering ikentgd the measured polarizations
are given by:

Pm _ 3 - blIl2 C(E’l)
N <c052 C(51) = ¢ (5 )2W>AS, (5.62)
Py _ . oy sin? ()
PsPp <(C't(sl)2 - Cy(51)2)W>AS . (5.63)

One should realize however that as soon as the valug afr ¢;; reduces to almost
0 (hence for small spin echo lengths) the above approximdigmoring the terms which
containg, — ¢2, is not valid any more. An example of such a measurement isarealled
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neutron depolarization techniquyd7]. In this case the flip count rate should be evaluated
different from the one represented before. The term coimigit, — ¢, in equation (5.32)
should also be taken into account so that the 4-flip countratemes:

TaTp JoAo
4 Amr2

Iy = PyPp (5.64)

/ etS(51)—i5" (51) <%’”(81) cos(279,m (51)) — %m(sl) 005(25m(§1))> d%sy.
A

From this equation the 4-measured polarization can be ateduwsing the results of the
previous section (equation (5.53)-(5.55)) and negledtieghuclear scattering:

P,
PaPp

sin? ¢(57)
1—2(¢(51)% + (1)) —=5— > : (5.65)
(1-2cr s cEn TR ) |
different from the one derived in the previous section. Toigesponds to thez-element of
the depolarization matrix as found in section 4.8. In thissgéntroducing an extra-flipper
between region | and the sample just reverses the sign of¢lasumed polarization.
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Chapter 6

Reflectometry

In this chapter a derivation is given of the measured coustirathe detector of a reflec-
tometer. Firstly, the propagation of the mutual coherenoetion through the reflectometer
is discussed. The properties of the incident mutual coleerémction at the sample sur-
face are determined from the geometry of the reflectometeco®&lly, it will be shown
that the detector count rate can be calculated from theesedtmutual coherence function
at the sample position. Finally, for specific cases a methatkscribed coupling the scat-
tered mutual coherence function to the incident mutual eaiee function, coupling the
measurements to the sample properties.

6.1 Geometry

For reflectometers a typical instrument geometry is showfigiure 6.1. A neutron wave
function created by a source at= z(, represented by a mutual coherence functign,
propagates through space toward the sample positien-atz;. At the sample the mu-
tual coherence functiohi;,, interacts with a sample. After the interaction the mutudlezo
rence function is transformed inig... This scattered mutual coherence function propagates
through space until it reaches the detector at x4. In the following sections examples

of properties of a reflectometer are given. In these insgtioe parameters as shown in
table 6.1 are used.

6.1.1 Propagation from source to sample

The mutual coherence function between poiRtsand P on the sample surface can be
found by assuming?; >> 27 /k, whereR; is the distance between the source point

S, at locationr; and sample surface poidi; at locationr;. Hence,R; =

g /

TZ‘—Ti

r;Q +7r? — 2(7?; -7;)2. It must be realized that the vectafs and+ are vectors in the

xz-plane and the vectom?l and 7‘; are vectors in thgz-plane, so that the vector product
only contains the-componentsk is the average wavevector of the quasi-monochromatic

57
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Sample surface

Xr = Tq

Figure 6.1: Notation relating to the propagation of the nalitwherence function through a
reflectometer.

symbol | description quantity | unit
H Height diaphragm above sample surface 4 cm
W, Width diaphragm iny-direction 1 mm
W, Width diaphragm irz-direction 10 cm
71 Distance between diaphragm and sample 4 m

Hy Height detector diaphragm above sample surfade cm
D, Width detector diaphragm ip-direction 1 mm
D, Width detector diaphragm ig-direction 10 cm
Tds Distance between sample and detector 1 m

A Wavelength used in calculations 0.2 nm

Table 6.1: Parameters for calculation of examples of pitgseof a reflectometer.
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beam. Applying equation (2.31) yields:

9 0 Zk R2 Rl) o o
an Tlv 7’2, / / o C(]); ;GAQ FO (7,/1’ 71/27 T)d27’/1 d2’1"/2. (61)
1412

For a completely homogeneous incoherent source with Aggaee section 2.6) the mutual
coherence function at the sample surface reduces to:

d*rl, (6.2)

oL Jo e~ kveT cos 01 cosé)ge““ (R2—R1)
Lin (71,75, 7) = 57—
Ao RoRy

2v, A4rm
whereJ is the isotropic neutron source flux in neutrons per secondgueared meter. For
reflectometry in the far-zones0; ~ 1. If 75 = 7 + 7, 7 = (Ax, Ay, Az)T andr < r;
thanR, — Ry can be approximated by:

Y Y _ _
Ry — Ry ~ —Ax (1 _on)tzoa) ) SN L Sy N )
2r] 1 1

wherez; = 71 - €, andy; = 7 - €,. The denominator in the integral of equation (6.2) can
be reduced te? without introducing a large error. If the source apertunettangular with

a heightlV,, and a widthiV, and the middle of the aperture is situatedat H andz = 0

the integral can be evaluated as:

Jo e—iE(Am—H)p‘r)

Din(PL, 4+ 7 7)o D 6.4
zn( 1,71 ) ) 2’[)1, 47_[_7.% ( )
W, %
H+—=% -y . .
/ 2 ei%(miy2+2myy)dy 2 ei%(niz2+2mzz)dz7

wherer? = k2% 5, = I%y ands, = ’%j. This integral can be reduced further to:
1

Lo . J eifc(Am—vyr)
Fin(’l"l,’l"l +’I",T) ~ %WX (65)
p 1

2 E(kia (ky/R5 + H —y1 + Wy /2)) = Eka(ry/r5 + H —y1 = Wy/2))

RETCHLS

Ko
g5 /) ElRa(R2/RG — 21 + W2 /2)) = Bk (ra/rg — 21 = W2/2))
o ’
with
E(z) =C(z)+iS (x), (6.6)

whereC(z) andS(z) are the cosine and sine Fresnel integrals [26].
Note thatlim, ... E(x) = (1 +1)/2 — i exp(—ira?®/2)/mx + O(z~*). This limit can
be used to find the mutual coherence function|fer| < Ay2k, Az2k:

- Jo W W eiF(Ar=vpT) gin (L, W) sin(Z k. W)
~ :
2vp 47r? 5K K

(6.7)
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1 —_
vl vl (B)
0.8 0,8 A
0.6 0,6 4
0.4 0,4
0.2 0,2 -
0 T T T T 1 0 T 1
0 5 10 15 20 25 0 50 100
Ax [ pm Az /nm

Figure 6.2: @) Amplitude of the normalized mutual coherence functionanplex degree
of coherencey alongz-axis at the sample surface fer = 0 (full line), z; = 1 cm (long-
dashed line) and; = 2.5 cm (short-dashed line). ) Amplitude of complex degree of
coherencey along thez-axis at the sample surface for = 0 (black line). The parameters
used are given in table 6.1.

Note that forlim, .o F(x) = x(1 + O(z*)) — iz®(7/6 + O(z*)). This limit can be used
to find the neutron density at the sample surface:

L Jo W W,
Lin(7,7,0) = 20, Am? (6.8)
Examples of the amplitude of the normalized mutual cohexémaction or complex degree
of coherence; are shown in figure 6.2. Figure 642shows the function along the-
direction Az = 0) at the sample surfacg = 0 andAy = 0. Figure 6.8 shows the
same along the-direction (Ax = 0). The parameters used in the calculations are given
in table 6.1. Note the difference in scale for theand z-direction. This is due to the
difference in diaphragm width and due to the small glancingjesd;*. In figure 6.2A the
mutual coherence function faf = 1 cm andz; = 2.5 cm are also shown. The width of the
mutual coherence function reduces when the distance tcethtercof the sample changes.
This can be explained as due to an increase in the (effeativith of the diaphragm in
the z-direction. A two-dimensional plot of the mutual coherefizection along the sample
surface is shown in figure 6.3. Note the difference in scatethé x- and z-direction.
Interesting fact is that the mutual coherence function masxtended tail in the direction
Az ~ Ax(W, +4z)/4r. This shows that if the coherence properties of the beanpéite s
in two separate contributions for the andz-direction the coherence of the beam might be

1The coherence length in thedirection holds for a quasi-monochromatic beam. Somatiinis argued that
for a real beam with a finite wavelength spread one shouldtaksointo account the longitudinal or time coherence
(section 2.2). For a relative wavelength spread of 0.01ishi$ the order of several nanometer. From off-specular
neutron reflectometry measurements it is known that strestaan be determined which have dimensions of
severahundredf nanometers. This indicates scattering is not determiryedteractions of the mutual coherence
function but by the interactions of the neutron wave functigth the (time-averaged) scattering potential.
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Figure 6.3: Amplitude of normalize mutual coherence fumtior complex degree of cohe-
rence at the center of the sample. The parameters used areigitable 6.1.

under or over estimated.

6.1.2 Propagation from sample to detector

The count rate in the detector is due to the scattered mubi@rence function propagated
from the sample position to the detector (see section 2.2af)jdHere equation (2.31) can
be used to calculate the propagation to the detector:

Lo COS ¢y oS o't 12— 1) N
F 5 B 0 - N Fsc ) ) 0 d d I 69
(74,74, 0) //y—(] R\ (r1,72,0)d"rod"ry (6.9)

whereR; = |7y — 7;|. Now for the integration area the sample plane must be taken®)
andcos ¢; = yq/R;, where(xg, ya, z4)" = 7. If, again,i, = 7 + 7, 7 = (Ax,0, Az)"
andr < R; this can be reduced to:

cos? ¢y

D(7y,74,0) = / — / e~ P o (71, 7y + 7, 0)d?rd?ry, (6.10)
y=0 Rl)‘ y=0

wherep = k(7; — 1)/ Ry1. The inner-integral of this formula can be interpreted aswarfer
transform of the mutual coherence function at posittpmn the sample plane. The outer-
integral is an average of that Fourier transform over thelaisample. In the far-zone
approximation the angles; are almostr/2 radians (see figure 6.1) am@}, in the cosine
factors and the denominator inside the integral can be te&estant:R; ~ r;s Hence, the
above equation becomes:

2
[(7a,74,0) = Tf% / e P (7, 7y + 7, 0)d%rd?ry . (6.11)
ds =0
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If the detector is located at the sample’s horizon @j£= 0) the neutron density due to the
scattered beam becomes 0. The explanation is that the sangpl@as seen by a detector at
this position is zero. If the detector area is large and th&eing is in the specular direction
so thaty,/rq4s can be taken equal t, /1, the total count rate in the detector is given by
(comparable to equation (2.50)):

2

1y = 2v, / Ir (3,71, 0)d2ry. (6.12)
z=0 11

If the scattered mutual coherence function is sufficienflsrow p’- 7 can be approximated

by:

R O o Bl VG N B8
2(xqg — x1)? Tq— X1
If further, the second and third term can be neglected {), the above integral equa-
tion (6.11) reduces to equation (2.46). The maximum valuthefsecond or third term
is given by the maximum okAxz or kAz and the maximum of eithey,;/(zq — 1) or
(za—21)/(xq —x1). The position of the detector should be approximately irpihstion of

the reflected beam. This limits the maximum valueggfx,—x1) and(zq—21)/(xq—x1).

The maxima forAxz and Az are determined by the spatial resolution of the reflectomete
under consideration. If for the maximum &fz the first maximum in figure 6.2A is taken
and forAz the first 0 of equation (6.7) is taken, the maximum of the sd@od third termis

of the order of 1. Hence, if the sample correlations exterad owuch smaller distances than
the resolution of the reflectometer as determined by therodr slit and the sample size,
one can safely apply equation (2.46). However, for sampieetaiions extending toward
and over the resolution of the reflectometer the above iategruation should be used to
calculate the detector count rate.

(6.13)

6.2 Specular reflection

For smooth interfaces a method is described coupling théesed mutual coherence func-
tion to the incident mutual coherence function. The procedsthe same as in chapter 3.
The scattered-wave function is coupled to the incidentedaxnction and then the definition
of the mutual coherence function is applied.

6.2.1 Scattering

If the scattering potential/ () of the sample is statistically stationary and only a func-
tion of the direction perpendicular to the sample surfaagghhey-direction) the three-
dimensional time-dependent Schrodinger equation caretieced to a one-dimensional
time independent equation. The procedure is to supposedtie function can be factor-
ized:

V(7 t) = e Wit / / Vi, ()1, (2)1, (y)dkpdk, (6.14)

wherek is the wavevectory, = hk?/2m andm the neutron mass. The time-dependent
Schrodinger equation [5],
L OU(7 1) R

— L X72\y(r = =
ih T 2mV U(7,t) + V(F) U (7, t), (6.15)




6.2 Specular reflection 63

then reduces to three independent differential equations:

d* Y,
#(x) + k24, () = 0, (6.16)
d?
712’;;(2) + k2. (2) = 0 (6.17)
and
d
L) 4 (k2 2} o, ) =0, (618

wherek? + k2 + k2 = k* andk2(y) = 2mV(y)/h? is called thecritical wavevector
equal todrp,. pp IS thescatterlng length density:? can be interpreted as the potential in
‘'wave-vector squared units’ and is closely related to tfiaotion index (see section 3.22).
The scattering-length density can be calculated by

po = (Nba) — & (N (0ws(N) + ine)/A) (6.19)

Hereb,, is the nuclear-scattering lengthy, the atomic-number density,;s()\) is the neu-
tron absorption cross section and proportional for a1 /v-absorberg;,,. the incoherent-
neutron cross section and constant for most practical chiee that the imaginary part of
pp is independent of the wavelength forl gv-absorber, when the incoherent scattering is
negligible. For some homogeneous materials the real angimagy parts of? are given in
table 6.2. The first two differential equations are linearosel order differential equations
and can easily be solved:

and
V. (2) = az(ks)e™ " + B (k. )e™ =2 (6.21)

The last differential equation depends on the potefiial). In the regiony > 0 above the
sample the potential is 0 and this equation also reducesear|second order differential
equation, with a general solution [38]:

Ui, (y) = e oY 4 pettoy., (6.22)

The first term at the right hand side corresponds to the intideamyy,, ;, = e~*+¥ and
the second term to the (specular) reflected beam,. = petkyy, Wherep is the reflectance.
The reflectance only depends di{y) andk, and can be determined by dividing the po-
tential V' (y) into a finite number of slices W|th some (varying) thicknessl @ constant
potential for each slice (see figure 6.4) [38]. In every slicine solution of the Schrodinger
equation has the form of equation (6.21):

Y <y <yjq1: U, (y) = ajeiru(y—yj) + ﬁje—iqj(y—yj)7 (6.23)

whereg; = +4/k2 — (kﬁj))2 andkY is the critical wavevector in slicg. The factorsy;
andg; in each slice can be determined by imposing the boundaryitionsl (continuity of
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Material R(k2) S(k2)
103 nm=2 | 1076 nm=2
Al 2.614(5) <0.1
Ar! 0.512(3) <0.1
36Art 6.67(4) 0.39(4)
Au 5.54(5) 20.00(3)
B 8.68(8) 350(4)
10g -0.16(50) 1890(20)
C, graphite 9.42(4) <0.1
C, diamond 14.70(6) <0.1
Cd 2.83(3) 408(8)
Co 2.84(4) 13.3(2)
Fe 10.07(3) 0.88(4)
Gd 2.5(2¢ 5258(13¥
Ni 11.8(2) 3.1(2)
58N 16.5(2) 1.5(1)
N, 3 4.087(8) <0.1
Sit 2.6037(6) | <0.1
Ti -2.45(1) 1.8(1)
SiO,, cristobalite 4.60(2) <0.1
SiO,, lechatelierite| 4.34(2) <0.1
SiOy, tridymite 4.48(2) <0.1
SiOy, quartz 5.25(7) <0.1
H,O -0.7024(26) 9.40(1)
D,0O 7.993(6) 0.26(1)

! Liquid Ar at triple point (83.78 K; 0.687 bar).
2 Strongly wavelength dependent.
3 Liquid N, at 77.35 K; 1 bar.

4 Single crystal at 295.7 K; 1 bar.

Chapter 6. Reflectometry

Table 6.2: Real nucleady(k2?)) and (negative) imaginary(k2)) part of the critical
wavevector for some materials at 293 K and 1 bar for a neuteorelength of 0.18 nm.



6.2 Specular reflection 65
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Figure 6.4: An arbitrary potentiaf (y), divided inn layers of constant potentii (/).
the wave function and its derivative) at each interface:
(o7 EN] Qs
= M ,
( Bi+1 ) ’ ( Bi )

14+e€¢; 1—¢; et 0
1 i J ,
MJ 2 < ].—éj 1+6j ) ( 0 e~ d; ) ’

wheree; = ¢;/¢;+1. The second matrix at the right-hand side of the equatiditssiiey
position overd;, the thickness of layey. dy is zero and ifj is greater than Qf; is given by
yj+1 — y;. For the total multilayer with layers is found

Q41 _ &%) _ &%)
(oot Yo ana a2 ) <ar(2) . 2o

As in equation (6.22) the reflection and transmission anngbéis are defined by:

(6.24)

ap =1 Bo = plqo) ,
(6.26)
Un41 = T(QO) Bny1 =0,

(78 ) =2 (o )= Come e ) ()~ 20

Hence, for the reflectance and the reflectivity is found

SO

r(go) = ——2~ and  R(go) = |F(qo)|* (6.28)
mo2

From equation (6.24) it can easily be shown that it is posdibicalculate the reflectance
from recursion relations of the reflectance = 3;/«; in each layer;:

F
2iq;d; rp i

ri ==¢
J F . )
1+7’j7"j+1

(6.29)
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whereer = (e; — 1)(¢; + 1)71, the Fresnel reflectance from materjato j + 1 and
rn+1 = 0. This relation is similar to the recursion relations dedi®y Parrat [39] for X-
ray reflection. The advantage of recursion relations isleatayer fewer calculations are
needed than for the matrix method. However, for extendeetitegns of the same structure
in a multilayer it is faster to use the matrix calculations.

6.2.2 Propagation from sample to detector

A quasi-monochromatic beam at the sample surface can bghhhotias an ensemble aver-
age of plane waves. The scattered mutual coherence furtaiobe calculated by realizing
that the propagation formula for the mutual coherence fang®.31) consists of two inte-
grals. One integrating the incident-wave function reaghgnint#, from /; and the other
integrating the incident-wave function reaching painfrom 175. To find the scattered mu-
tual coherence function one has to multiply (before intégga the incident-wave functions
by the appropriate reflectance according to the above enuati

9 0 7;’2:(32731) = =
Fsc Tlv 7’2, / / COS - CORSl ];25\2 FO (Tllv 71/27 T)dz d2T27
(6.30)

whereg; = /_ﬂ(rz -€y)/R;. This equation can also be derived using the results ofwsettl.

Now the same procedure as in section 6.1.1 is followed, w#tsame symbols used. For
a completely homogeneous incoherent source the mutuateatefunction at the sample
surface reduces to:

o8 01 cos foeik(R2—R1)

Jo e—tkvpT )
* d 6.31
| plarystan H 63D

Fsc('FMF%T) = % A

If the mutual coherence function is sufficiently narrgw~ ¢; so that the above equation
reduces further to:

. Jo e~ thvpT cos 61 cos QgeiE(Rz_Rl)
Fsc(rla T2, T) = 5 R(ql)

d?r 6.32
2, dr  Ja, RoRy " (6.32)

whereR(q) is the reflectivity defined aB(q) = p(q)p*(¢). If the source aperture is rectan-
gular the integral can be evaluated as:

Doo(71, 7 + 7, 7) = R(q, Aq, @)D (71, 71 + 7, 7), (6.33)

whereq = kH/r1, Aq = kW, /271, « = \/Azx/7k and

~ f‘I+AqR —71a27]2d,'7
R(QvAQ7 ) - fq+Aq —iZ a2n? dr] ) (634)
q—Aq

is a folded reflectivity. Note that fahx = 0 this reduces to:

fq+Aq R

(6.35)
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If the scattering (or reflection) is mainly in the specularedtion and the detector area is
large enough, the total count rate in the detector is giveaduation (6.12):

2
Ii= 2, /A &5 R(a, 5q,0)Tin (7,71, 0)ry (6.36)

s

which using equation (6.8) reduces for an incoherent saorce

q R(q,Aq,0) ,

d’ry (6.37)
471'7"

Iy = JoW, W, /
and for the slit geometry assumed here:

ToASW. W, S At R(n)dn
dmr? k;22Aq

I = (6.38)

Note that the total reflected beam is detected by the detecidrit is assumed that the
sample is small so that the resolution is due to the entraiagdchgm and the distance to
the sample only.

6.3 Born approximation

To find the scattered neutron count rate due to a rough suffeseribed in appendix B)

the first Born approximation can be used. It is based on equé3i 18), wheré&- is found
using equation (3.21):

Su@) = [0 [ mEn + (6.39)
Using equation (3.19) for the scattering length density equiation (B.6) for the potential
this becomes:
Sk(d) = p? / / e T By @By, (6.40)
Vs J Vs
wherep, = —2mmVy/h?, the scattering length density of the homogeneous sample an

the integration extends over the sample volume. Transfggtia Cartesian coordinates and
ignoring effects due to the finite beam cross section thisimes:

pgAs, ) aZg(z,z) 202
Sk(q) = q2‘ / e~ i(txm+q=2) {e_ 2 —2cos(qud)e” "7+ 1} dedz, (6.41)
y  JAs

wherei = (z,y,2)" andq = (qs,qy,¢.)". The first term inside the integral represents
the beam scattered from the top (rough) surface, the seeomdthe interference between
the top and bottom and the third term the beam scattered frerhdttom (flat) surface. In
general the second and third term are ignored, yielding [40]

where
A2~ %"

Ss(q) = Té(%)é(QZ) (6.43)
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is thespecularcomponent and

2 2
e w7

Sd(q“) _ / e_i(‘I.—n-'ﬂ"!‘qzz) (equc(t Z) — 1) dxdz (644)
As

a4

thediffusecomponent of the scattering. Hence, the sample correlatimstion can also be
split in two components&(7) = G5 s(7) + Gs,q(7):

. 1 o .
Gosl) = oy /e s @i =of (L), (6.45)
wheref(z) = z erf(z) + e=*" /\/7 and
GyalF) = ﬁ / e TS (q)dq. (6.46)

The incident mutual coherence function is given by equaios):

o = J efil}(z+vp‘r)
Fin(’l’l,’rl + T,T) ~ ﬁwx (647)
p 1

3 Ws
2 . 2
/ ez%(ﬁ’iya'i'zf?/y/)dy/ e %(Kzz[2+2ﬁ z )dzl’
Wz
—E -z

wherex? k ,,, Ky = Ky andk, = fl. The detector count rate can be determined by

Tr1

applying equatlon (3.10):

Iy = 2v, / Rout (71, 71 4 7)G s (F)Tin (71, 71 + 7,0)dr, (6.48)
where )
L . efz[)'-'r_" )
Rout (71,71 +T) :/ ————d’ryg (6.49)
Aqg |7“d - 7”1\

andp' = k(7 —71)/ |74 — 71| and it was assumed thats 6, ~ 1. Conform equation (6.13)
it follows that:

_ 2 _ 2 _ _
g~k —z+ (ya 2y1) x+ (2 221> T — Yd yly + Zd A z) (6.50)
2rd, 2r3, Tds Tds

and R, (71,7 + 7) can be evaluated as:

ik y1+—- Dz o
Rout (71, T14T) = 62 / 2 ei%(zkyyrkiyg)dyd 2 '8 (~2k-24 kizé)dzd,
Tds Hd—yl—D;’ —%—21
(6.51)
wherek2 = k%, k, = ’“y andk, . D, and D, are the width and height of

the detector anaHd the y- posmon of the detector In general equation (6.48) cdy ba
evaluated numerically. In special cases one can try to eethecabove integral.
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6.3.1 Specular count rate

For the specular scattered neutrons this can be done byinggthatG, ;(7) does not
depend o or z and hence the integral reducesgg & 0):

Jom S
1 (7) 6.52
T ]4;27“17"(15 / T / —7z1 ( )

Has 22 y , /2 2 2 2
[, / P(FE ) (22 2 (YRR a2 gy dyadet dzady,
d*— r1 Tds 27"1 2rds

where it was used that:

/ s / €711 dz = 470(02)9(g)- (6.53)

Further integrating over,, y, and assuming the detector width and height are large enough
to catch all specular reflected neutrons, yields:

JOWZTF / _’ / =2 21kyy /T
= Gs.s( 761 'd 6.54
- (7 w Wy (6.54)

The inner integral ovey’ can be evaluated assuming thain the nominator is constant,
which is a good approximation whe#, < H. Then

1, 2R W=y / G (Pe iayy SI(EYWy /1)

6.55
kriq, kyW, /i ( )

whereg, = 2kH/r;.

If the height of the entrance diaphragms is sufficiently $milV, /71 < 1 then the sinc
function~ 1. The integral then reduces to a one-dimensional Fouriestoam comparable
to equation (6.41) with the transform overandy omitted, resulting in equation (6.43)
where the facto#r25(q,)d(q.) is omitted:

24, .,
/Ggs iy dy = 22 o= djo”, (6.56)

Zl

Finally the detector count rate becomes:

QWJOWZI}VypZ%As e—q§02

I, = = 6.57
d 2 & (6.57)
For the empty beam the detector count rate is given by equgis0):
Jo Ay W, W,
Id,empty = 2’UpAAb]-—‘in (Fl, Flv 0) = %7 (658)
e

where A, is the beam cross section at the sample position. If it israssithe sample area
covers the whole incident beam, thely = A;/sinf; wheref, ~ g,/2k is the angle
between beam and the sample surface. The specular commdrikeetreflectivity, defined
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as the count rate in the detector due to the specular compoh#me sample correlation
function divided by the count rate of the whole beam at thepdaposition becomes [40]:

2 2
1672 pte” 1

R
s q;

(6.59)

For o = 0 this reduces to the large limit of the Fresnel theory, equivalent to Porods
law [41]. If the height of the entrance diaphragm is not sigfily small equation (6.54)
can be rewritten as:

I

W, W, 4mp2 Ay 1 n/2 ,—(z+1)%q}o?
_ JoW=Wydnp A b_/ ‘ dx (6.60)

rig; nJ oy (w+1)3

wheren = W, /H and the specular component of the reflectivity becomes:

2 2

2 _2 2 2 2
167%pPe %7 1 /’7/2 e~ (@t)’dyo

R, —_—
q'?/ nJ—n/2 (37-'— 1)3

dz, (6.61)

which can be approximated by:

2 9 g2 & 2 9
_ 167 ppe 51nh77qyay

R,
’ q ng2o?

(6.62)

The functionsinh /2 > 1 so that the reflectivity measured with a finite resolutionlis a
ways larger than the one calculated using the above methioel ré&sult is that a fit of the
reflectivity of measured data with equation (6.59) alwaysds a roughness which is too
small. This was already mentioned by Braslau at al. [42].

6.3.2 Diffuse count rate

The diffuse component of the scattering can be evaluatdgitara if it is assumed that all
instrumental resolution effects can be ignored. This caadieved by reducing the width
and height of the source and detector to infinitely small@slurhen equation (6.48) can be

reduced to:
_ JoDy,D.W,W,

2.2
dmriry,

whereq, = k (HZ“f - H§+(Z"Z1)2),qy =k (% + ﬂ) andg. = k (M - Z—l).

21”? 21”;215 Tds Tds T1

Iq p%A‘ng((qmqy,qz)TL (663)
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6.4 Distorted-wave Born approximation

The first Born approximation is only valid for weak scatterinf the intensity of the re-
fracted beam becomes of the same order as the incident beamtfre critical angle for
total reflection) this condition is no longer valid and theulks of the previous section can
no longer be applied. In that case one can try to calculaténteasity of the refracted or
reflected beam by using the distorted-wave Born approxondt0], [43], [44], [45]. In
short it comes down to making an accurate enough estimateeaféutron wave function
in and near the sample and use this estimate to calculate#tered intensity (see also
section 3.1). In most treatments the estimate of the newtae function in the sample
is based on the solution of the one-dimensional Schrodiegeation for a smooth surface
with a sharp or graded interface. First the incident-wavefion must be determined, then
the scattering of the incident-wave function into the srati-wave function and then the
scattered mutual coherence function must be established.

6.4.1 Scattering of incident-wave function

Let (7, ¢) denote a neutron wave function characterizing the field ettptat timet. The
neutron wave functio® (7, ¢) is constructed by its constituting monochromatic planeava
components (see also section 2.1):

B(F, 1) = e—iont / (7 2k, (6.64)

wheref is the wavevectory,, = 7ik2/2m andm the neutron mass. The integral is over two
dimensions only as for a monochromatic wave the length ofviénevector is constant. If
further it is assumed that the incident neutron beam is @ittt positive value’s of and

z only, the wavevectok = k| + k,¢é,, wherek, = k - &, so thatk, = —, /k? — k2. The

negative sign denotes that the plane wave is traveling ir-thdirection. The plane-wave
components of the incident beam can be described by:

bin(Fy7) = o (K )™ 7. (6.65)

Hence, the incident-wave function can be described by:
Wi (Fy 1) = e "o0? / R T (K )Ry (6.66)

For a surface with some roughness or structure the scafteatentiall’ () can be split in
two parts:
V(™) =V O(y) + V(R (6.67)

whereV () (y) represents the potential of the smooth surfacelafid(7) is the disturbance
of the potential due to the interface roughness or structlweing the previous defined
height of the surface the above potentials are given by faisguthe sample thickness is
much larger than the surface roughness):

h2k?
= —1

VO (y) = 5

((—y) (6.68)
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and

VO(R) = 2% (uly) —uly — H(z, 2))), (6.69)

wherek? = 2mV, /h2 = 4mwp,. Assume the distortion of the scattered wave can be de-
scribed by:

Pse(k, ) = PO (k,7) + oY (k, 7), (6.70)

wherewgg)(lg, 7) is the undisturbed scattered-wave function from the p#yfélat sample
surface. Using equation (3.1) it can be shown that

OF, 7) = un (F, 7) — 22 / GolF, P VO (4O (R, ) dr, (6.71)
and
VOER) = =23 [ Golrii) (VO el ) + VO )bl dore
(6.72)

whereG (7, 7s) is the free particle Green function for scattered waves. tRersolution
of this last equation the first term inside the integral isleeggd, which is allowed if the
first integral is much smaller than the second. This is the das{’ (k,7,) < {2 (%, 7,)

or whenV () has only Fourier components much smaller tikanThis is why this
approximation s called distorted-waBern approximationin the second term the equality
of equations (3.1) and (3.4) can be used, so that up to first ¢tiné scattered-wave function
becomes:

B =23 [GOERVO G E R (6.73)

To solve this equation a precise estimate of the Green fumatid the undisturbed scattered-
wave function is needed. The Green function can be estintgteteans of the Green func-
tion for a smooth surface, which is a further approximatiblote thatis. contains both
the scattering due to the smooth potentia?) (y) and due to the potential of the surface
roughness or structufié(?) (7). This is split in a part due to the smooth surface on‘ﬂ§8()
and due to the surface roughness or structmﬁé)l. However, for evaluating the total scat-
tering one should not neglect the interference betweenttbgarts when determining the
scattered mutual coherence function. In general the grtente term reduces the specular
reflected part of the mutual coherence function as will bewdised in section 6.4.5.

6.4.2 Undisturbed scattered-wave function

The plane waves which are reflected or refracted at the ghrfbat sample surface are
given by (assuming a very thick sample):

D (k, 7) = o (k) e’ I (y), (6.74)

where
W(y) = €™ + plhy)e™™0y >0,
(6.75)
Ui (y) = 7(ky)e™v y <0,
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andk;, = —,/kZ — kZ, the negative sign is used &g is also negative due to the reflec-

tion geometry. k2 = 2mVy/h* = dmpy, p(ky) = (ky — k})/(ky + k) and7(k,) =
2ky /(k, + k) (see also section 6.2). It can also be derived by transf@emguation (6.71)
(see section 3.1) to:

BOFE,7) = Yin(k f)—Qm / GO FE VO (g om (B 7)d . (6.76)

Inserting the incident-wave function (6.65), the appraf@iGreen function (see appendix D)
and the undisturbed potential (6.68):

B . . 0 . /
wgg)(];?;*) _ wO(EH)eik”'r <ezkyy + e~ thyy kCQZEf ) / e—z(ky+ky)ysdys> 7 (677)

for y > 0. The integral overy; can be performed assuming a little absorption so that the
lower limit vanishes, yielding

DO (R, 7) = (k)™ ™ (¢ 4 p(ky e~ *ov) | (6.78)

The same can be done fgr< 0, yielding equation (6.74). This solution for the undis-
turbed scattered-wave function is used by Steyerl [43h&iet al. [40], Pynn [44] and De
Boer [45]. Weber et al. [46] were not able to fit their data viitls approximation and found
a good fit with the following approximation for the undisterbscattered-wave function:

Ui(y) = e + pp(ky)e vy y >0,
(6.79)
Ti(y) = 7 (ky)e™? y <0,

wherep, andr, are the transmission and reflection coefficients forthughsurface deter-
mined by an appropriate graded interface.

6.4.3 Green function

The Green function for scattered waves can be approximatéaking the Green function
for scattered waves for the undisturbed potential [43]],[#8] defined by:

= 2mV O (7,
<v2 R - (7 )> G (7,7 = §(F = 7s), (6.80)

which for large distancesi{— 7| > \) and small scattering angle reduces to (see also
appendix D):
GH(7, 7)) = Go(F — 7 )ePr¥= W, (ys), (6.81)

wherey, = 7 - €, P = k(F — 75)/ |F — 75|, Go(7) is the free particle Green function as
defined in equation (2.33), which can be expressed in terrms of

DT

Go(7) =

(6.82)

4rr



74 Chapter 6. Reflectometry

and¥,(y) is the part of the Green function determined by the samplaildet
Up(y) = e~V + p(py )Py >0,
(6.83)
Up(y) = 7(py)e”"v? y <0,
wherep(p,) = (py — 1))/ (py + P),), the reflection coefficient of the wave reflecting at the

sample surface (see also section 652).= +,/p2 — k2, the accent denotes the value of

the variable in the sample material and the positive sigakert ag, is also positive and
7(py) = 2py/(py +p,), the transmission of the wave function traversing the sarapiface
from outside to inside. Sinha et al. [40] use b5 (y) the so-calledime reversed solutian

Up(y) = e~ + p(py)*e?n?  y >0,
(6.84)
Uy(y) = 7(py) e ¥ y <0,
which only deviates by the complex conjugated valueg ahdr, which do not influence
the final results. Pynn [44] decided to use:
Vy(y) = e~y 4 Pr(py)*eipyy y >0,
(6.85)
\ij(y) = Tr(py) —PyY y <0,
wherep, andr, are the reflection and transmission coefficients for the maigface. De
Boer [45] mentioned tharegular solution of the one-dimensional Scrodinger equation:

Uy (y) = 7(py)e P y >0,
(6.86)
y(y) = e = plp,)e™Y y <0,
which gives the transmission and reflection amplitude ofitlee starting inside the sample
traveling outside. He uses this to find the one-dimensiomak® function and gives the
same formula as Sinha et al.

6.4.4 Scattered-wave function

Finally, to conclude, equation (6.70) can be inserted ireéiqn (6.64) to find the scattered-
wave function in the far-zone:

U, (7, 1) :e*iw/{ Ok, 7) + L (/Z,f)}d%ﬂ, (6.87)
where ) . -
WO (k,7) = plky)e™ > v (k,7) = p(py)o(F))e”™, (6.88)

wherep; = IZH andp, = —k,. The first term of equation (6.74) (> 0) is ignored as it
does not contribute to the mutual coherence function atéiector position.

Using the Green function derived in the previous sectiontardundisturbed scattered-
wave function (in the sample), equation (6.73) in the fareza@duces to:

_’ 1pr 72Q” s
¢(1) /wo H \Ijk(ys)qu(ys)v(l)(ﬁe)d:i""m (689)

4m |7 — 7|

WhereQ” is the wavevector transfer parallel to the surface defineﬁ”as P — EH.
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6.4.5 Scattered mutual coherence function

The scattered-wave function (equation (6.87)) can betedén the definition of the mutual
coherence function (equation (2.6)) to find the scatterethatcoherence function, which
splits up into four parts:

Duo(71, 7, 7) = DOO (7 7, 7) + D07 7, 7) + DOV (7, 7, 7) + DD (7, 7, 7),
(6.90)
where

L0 (7, 7, 7) —e_“"”// W) wg’;)(z%;,@)>d%l,”d%,u (6.91)

and indexes andb have values or 0.

The part with index(0,0) represents the mutual coherence function due to scattering
from the undisturbed potential;(?). The derivation of this part is given in section 6.2.2
or appendix C. The parts with indexék, 0) and (0, 1) represent the interference terms
between both wave functions. The part with indéx1) represents the mutual coherence
function of the scattering due to the rough or structuree il V(M) (7).

If ng‘i) andw‘gﬁ) are inserted in the above equation the ensemble average pantinside
the integrals resulting in a fact(étwo(lgu)*wo(ﬁﬂ )>. As shown in appendix C this factor can
be calculated by means of the incident mutual coherenceifumcif the incident mutual
coherence function is homogeneous, the wavevector dissibiV;,, (7', k) as defined in
equation (C.7) can be used f@o(ﬁ|‘)*wo(ﬁ‘|)>.

Another term that occurs when evaluating tHel) term is the product of two Green
functions, each depending on its own vegiorAccording to its definitiony is dependent
on 7, which is different for both wave functions in equation (C.4However, vectory
of one wave function can be approximated by vegiaf the other as long as the sample
correlation length is much smaller thgfr4, /% (~ 6 um for a detector distance of 1 m and
a wavelength of 0.2 nm). This is just the same effect as dészlis section 6.1.2.

Using these approximations it can be shown that (neglettiagar-zone interference
between incident and scattered beam):

ﬁF ” §— wkT) Gak
T (7, g+ 7, 7) = /// sLhe (5, 75)d*sd rod? k),
4r2r
(6.92)

where

m
27h?

2
) VO F ) V(7 + 5).

(6.93)
If the sarpple size is much smaller than the distance betwamiple and detectory; and
Win (7, k) can be taken constant over the sample volume and the scatterteial cohe-
rence function reduces to:

S(5,7) = Wy + 55) Wi y) T+ 5,) U (5)° (

z(p F—wpT)
Fsc('Fda Ta + Fy 7_) A2 /W'Ln Tsv kH)Sk(pa )d kHv (694)
ds
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where thesample surface structure facter defined as:

S = [ @G, @Ry (6.95)
and thesample correlation functiononsists of 4 parts (see also appendix D):
R(ky)py A,
0,0 -\ Y
GOV k) = — 5, (6.96)

2
GS’”(@’W:( - > VOTWQ/ Uy (ys) Urlys) VI (7o) dPrs,  (6.97)

271h? 2ipy,
GO (5, k,7) = GO 5k, ) (6.98)
and
- m 2
GV R = (—2> * (5.99)
‘ 2rh

//\Ilp(y‘e)*\l/k(%)*\yp(ys + y)\I/k(ys + y)V(l)(ﬁg)*V(”(ﬁg + ﬁ|)d37‘sdy-

If the sample size can not be neglected but the extensioreafample correlation func-
tion is much smaller than the distance between sample amdtdetthe integral over the
sample volume can be split up in parts. For each part the aqmu@ximation holds and all
the parts are added resulting in:

1 i(prF—wkT) .
Fsc(ﬁide +Fa T) = A_/ a An2r2 /VVWL Tg,kH)Sk( ,k)d2k'“d27‘s, (6100)
s JA ds

where the summation over the parts is transformed back mtotegral.

All information about the sample is contained in the sampleaiation functiong{*?
G represents the sample correlation function of the flat seri@’"” andG'>" rep-
resent the correlation between the flat surface and theceustaucture GV represents
the correlations in the surface structure. Note tﬁﬁtl) is determined by three factors: the
incident-wave function (represented ty;), the undisturbed scattered-wave functidn,)
and the sample structure potenti&l(Q)).

To determine this function Steyerl [43] assumed that bo#e@function and undisturbed
scattered-wave function could be approximated foraby their expressions fays = 0,
which is only reasonable jf,c < 1 andk,o < 1, whereo is the standard deviation of the
height distribution. Sinha et al. [40], Pynn [44] and othessumed that for diffuse scattering
both Green function and undisturbed scattered-wave fomatould be approximated for
all ys by their analytic expressions for eithgr < 0 or y, > 0. Since both functions
and their derivatives are continuousiat= 0 this is a reasonable approximation as long
ask.oc < 3 [44]. Pynn and others assumed that this approximation walsid hold for
the specular component, while Sinha et al. used the fullesgion dividing the specular
contribution up into four components.

Using the above approximation the sample correlation fandiecomes:

2
7 T(k )T Dy
G0 (5, k7 :< = ) v v/ 210" vy W (7)) dBr 6.101
s kT = {5 2ipy (75)"d°r (6.101)
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0 ! ! ! ! 1

0 1 2 3 4 5
ki /ke

Figure 6.5: Transmission factdf, as function of the component of the wavevector per-
pendicular to the sample surfacé. is the critical wavevector depending on the sample
scattering length density,, (k2 = 4w py).

and
m

27k

2
G.&l’l)(m,m:( ) T(k,)T(p,) (6.102)

/emzy/ei(";*“y)yﬁv(l)(ﬂ)*v(l)(Fs +77|\)d37“sdy>

wherex, = p, — k, equals the wavevector transfer inside the sample (remethber
R(k,) < 0 andR(p,) > 0) andT'(k,) andT'(p,) are the transmission factors for the
incident and reflected beam respectively, given in tablel6.3, is real the sample surface
structure factor reduces to the productiofk, )T’ (p,) times the Fourier transform of the
sample correlation function as given in equation (6.39erelh = QH — Ky€y. The factors
T'(k,) andT'(p,) are shown in figure 6.5. The maxima are due to standing wae¢siid
up at the surface at the critical angle. These result in deecd¥onedapeaks [49] in the
diffuse scattering pattern.

6.4.6 Sample surface structure factor

The sample surface structure factor can be split up in a $grepart and diffuse part in a
similar way as introduced for the Fourier transform of thengke correlation function in
section 6.3. It consists of four terms:

S, k) = SOV (5, k) + S0 (5, F) + SOV (5, F) + S (5, F), (6.103)
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where the first term is the contribution due to the flat surfac® (y,)):

- . A2 p?T (ky)? .
S0 (5. F) = R(p,)pi AP (q)) = 7?2 B)”50) (1), (6.104)
Yy
The two-dimensional Dirac-delta function indicates thas tpart of the sample surface
structure factor only contributes to the specular reflectigy = 0, sop; = k| and
py = —ky,. The second and third terms are interference effects betiveeflat surface
and surface structure and can be evaluated in the same wayjoas:b
o As7T2 2Tk12 i i(p! )V H(x,z
S0 (k) = pb—,(*ﬂw @) (E[eQ‘(”u) H@2) - 1) : (6.105)

whereE[z] is the expectation value af If p; is real and the surface structure is a Gaussian
distributed roughness, the expectation value is given bagon (B.2):e‘2(1’é)2”2. Further

SOV (5 k) = S0 (5, E)* (6.106)

Note that in the total reflection region (as longigs< k.) p;/ is purely imaginary and the
sum of 5" and5{"" is 0. The last term is due to the structure of the surface:

2
Py_g0.0) _ By g0 5 ) — L5 (5 )+ (6.107)

SV (5 k) = -
g ey Py, " () "

pgAST(ky)T2(py)//eii(quJrqzz)E[eiHZH@S’Zs)iiHyH@Ser’szrZ)]d.’EdZ.
[y

If x, is real and the surface structure is a Gaussian distriboteghness, the expectation

values are given by equation (B.3):"+9("2)/2 and if x, is complex the expectation value
is given by [40], [50]:

E[einzH(xs,zs)finyH($5+$,Zs+z)] _ 6,(”y7HZ)202/267‘Hy|2g($’z)/2 -+ O(/{?jo’z). (6108)

Using equations (6.100) and (C.28) the neutron flux at theatiet position becomes:

J (74, 74,0) Jo Si(7, k) d>r, (6.109)

= 2 2
2v0pdmrg 50 J Ao

Sinha et al. [40]| Pynn [44] Weber [46]
De Boer [45]
Wi (y) T(ky)eik'/”y T(ky)eik'/”y Tr(ky)eik;y
U,(y) | 7(py) e 7 (py) e | (py)e®Y
T(ky) T(ky)T(ky)* T(ky)T(ky)* Tr(ky)Tr(ky)*
T'(py) | 7(py)7(Py)" 7 (Py)Tr (Py)* | T (Py) T (Py)*

Table 6.3: Undisturbed scattering functidl, (y), Green function,,(y) and transmission
factors,T'(p, ) andT'(p,) for calculation of the diffuse sample surface structurédafrom
different references.
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— —

wherek = k(7. —1)/rs0. By using equation (2.44) the count rate in the detector ineso

I = L / Si(p, ) d>r dPrq. (6.110)
Aqg

4’/T7’d€ s0

Assume, as before (equation (6.42)), the sample surfagetste factor can be split in a
specular and diffuse component:

SK(B.F) = i A, (S, F) + Sa(B. ) (6.111)

then, the specular component is givergy> k..

IR 7T2T ]{;1 2 N _ 12,2 2 o
S, k) = % (1 o R 1)) 5?(q)), (6.112)
Y y

which reduces to the first factor only in cgsg< k. and the diffuse component by:

7 T T % —
Sa(p, k) = ()T (py)e // gz+a:2) |K”| Cl2) _ )da:dz. (6.113)

‘“y|

Note that these structure factors have essential the sameafothe expressions derived us-
ing the Born approximation (section 6.3). They only difieiate via the facto¥"(k, ) T'(p,)
and the different wavevectogg andr, used in the exponentials. For valygs>> k. the
expressions become the same.

6.4.7 Specular count rate

The count rate due to the specular structure factor can balatd by inserting it in equa-
tion (6.110):
JOAS

= 20 | k2R k,)d>r’ 6.114
A2 k2 J 4, pwpal(ky)dr’, ( )

wherek = k(7 — ') /rs. For the specific geometry as discussed in section 6.1 this ca

be reduced to:

JoAW. W, fq+ ' ¢®Rpwpalq)dg
4, k22Aq ’

whereq = kH/r, andAq = IEWy/er, equal to equation (6.38). The specular reflectivity
is given for the present case by:

I = (6.115)

2
Rowpa(k,) = R(k,) <1 + 2 (e*m(p;)%z - 1)) : (6.116)

Dy

This specular reflectivity was obtained by Sinha et al. [4@hin the same accuracy as in
the present case and can be reduced o k.):

Rpwpa(ky) = R(k,) (e_4k?/k;/”2 v O(ky(k;)?’a‘*)) , (6.117)

equal to that given by Blvot and Croce [51]. Approximately the same result can baiobtl
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In (RDWBA(ky)) 0 1

R(ky)
(kca)2

25 1

=50 -

=75 A

-100
0 1 2 3 4 5
ky/ke

Figure 6.6: Ratio of reflectivity for several approximatsoriull line: according to Sinha,
Pynn and present text fét.oc < 1; long-dashed line: present telxto = 0.2; short-dashed
line: present texk.oc = 0.3.

with a graded interface where the profile of the index of reiftecis the average over the
xz-plane [38], [44], [2].

The difference between the above approximations for thewdgereflectivity of a rough
surface is shown in figure 6.6. In this figune(Rpwpa(ky)/R(ky))/(k.o)? is plotted
as function ofk, /k.. In the same figure the specular reflectivity obtained by &iahd
Pynn is shown. Clearly there is some difference, howevemvihe < 0.3 the difference
between the two approximations can be neglected, more fliofoegion close to the critical
edge att, ~ k.. De Boer [45] introduces an approximation B g 4 that depends on
the correlation length of the roughness. This correctiomdwer, is small and only of some
importance ak, ~> k.. For more accurate results, also the coherence length oéthieon
beam should be incorporated in the above picture, viz bygusguation (C.6) instead of
(C.7) and equation (6.92) instead of (6.94). In generas, ¢hin only be done numerically.
However, in view of the accuracy of the distorted wave bonorapimation (the difference
between several versions of the distorted wave born apmpiation can not be neglected) in
general this will not yield a more reliable interpretatidritte experimental data.

6.4.8 Diffuse count rate

The count rate due to the diffuse structure factor can beutzkd by inserting it in equa-
tion (6.110). If both the detector area and the source aeeaaay small this reduces to:

JoAoAdAsp? .,
4= 2222 6 (B k), 6.118
d 47_(_7,(2157,30 d(p ) ( )
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Reflected beam

— phase shift= 2Hksin 0

Incident beam

Figure 6.7: Model of grating with neutron beam parallel to\gr direction of grating. The
extra phase-shift acquired by the neutron wave functiomfbeight difference off (z, 2)
is indicated in the figure.

comparable to equation (6.63) except for the enhancemetior§ (%, ) andT'(p, ).

This is the same as given by Sinha et al. [40], Pynn [44], Der B&fg] and others (see
also table 6.3). Weber et al. [46] finds that this solutionas able to fit their data and
argues that for the Green function the time reversed versidhe solution of the rough
surface should be taken, and for the undisturbed wave theicolitself. If this is done,
their data can be fitted by the above theory. De Boer [45], #@lies that it depends on the
correlation length of the sample surface structure factdckwsolution one should actually
take.

6.5 Phase-object approximation

The distorted wave born approximation is only valid for seding at surfaces with a rela-
tively small roughness or surface structiétger < 1. If k,0 becomes of order one or larger
this condition is no longer valid and the results of the pwesgisection can no longer be ap-
plied. In that case one can try to calculate the intensithefrefracted or reflected beam by
using the phase-object approximation as discussed heshohit comes down to making
an accurate enough estimate of the neutron wave functiondmaar the sample and use
this estimate to calculate the scattered intensity (seesalstion 3.1). An example of such
a sample is shown in figure 6.7. In this figure a Silicon gratinshown where the surface
has been etched away, resulting in a variable heifjht, ~) of the surface.

Again, the estimate of the neutron wave function in the sangpbased on the solution
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of the one-dimensional Schrodinger equation for a smoetfase with a sharp or graded
interface. However, now it is assumed that this interfagéesan height adi (z, z). The
incident-wave function is the same as before. The scatt@fithe incident-wave function
into the scattered-wave function is determined by an apatgpGreen function and then
the scattered mutual coherence function is establisheda Borface with some roughness
or structure the scattering potentla(r) is given by:

V(r) = mc u(H(x, 2) —y), (6.119)

wherek? = 2mVj /h2 = 4mp,. The Green function for scattered waves can be approx-
imated by taking the Green function for scattered wavesHerundisturbed potential at
position(z, z) along the sample surface (see Appendix D):
G (7, 7,) = 1 OOeiﬁ(F—Fs)Leim(ys—H(zs,zs))\p (ys — H(xs, 25))d?p
s s A2 0 2’pr p\Ys EPRZ |
(6.120)

where ¥,(7) is the part of the Green function determined by the samplaildet The
scattered-wave function,. can be found using equation (3.4) inserting the above Green
function and the incident-wave function given by equati®®%):

> = peto(ky)
wsc(kvr) = wvn( 7T) - T”X (6121)
o] ip-r . , H(zg,zs) ] ,
/ T(py.)e — /e_iQH'FS’” €i(p7/_py)H(mS’ZS)/ €l(ky_py)ysdysd27"s Hd2p”a
0 2ipy e ’

whereQ’H is the wavevector transfer parallel to the surface define@Has P — IQH. Thein-
tegral overys can be performed assuming a little absorption so that thertmit vanishes,
yielding

Yae(k,7) = in (, 7)+ (6.122)
i oo L )eir T L 4
puibol |)/ 7(py)e : /e—zQH'rs,”e—leH(mS,zs)d2rs,ud2p”’
T 0 2py(ky_py)

where@), is the wavevector transfer perpendicular to the surfaceeéfast), = p, —
k,. This wave function can be inserted in the definition of theualicoherence function
(equation (2.6)) to find the scattered mutual coherenceifumclose to the sample surface.
After neglecting the interference between the incidennbead the reflected / refracted
beam and assuming the scattered mutual coherence funtbies to the sample surface
is homogeneous, the wavevector distribution of the saadtenutual coherence function
becomes (using equation (C.12)):

1 . .
Weclii ) = = [ Wl ) Sul Ry, (6.123)
] S

'RPO(—*’E)/efiQ”-T“”E[efiQy(H(wﬁx,zﬁZ)*H(u,zs))]d%u’ (6.124)
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Figure 6.8: Phase-object enhancement coefficient as @mofithe reduced perpendicular
component of the incident waveveciqy/ k. and scattered wavevectoy/ k..

and )
o
Rpo(f.F) = |F2—2u| (6.125)
ky — Py
is thephase-object enhancement coefficigsee also figure 6.8).
For the specular parp{, = —k,) it is equal to the reflectivity of the flat sample surface.

For |k,| — 0 and|p,| > |k,| this factor goes to infinity, the total scattering however is
limited as the neutron source areaffby| — 0 also goes to 0. The sample surface structure
factor is proportional to the two-dimensional Fourier sBmmm of the expectation value of
the relative phase shift acquired by a neutron wave funcgélecting from the surface of
the sample. This is shown schematically in figure 6.7. Thentmate in the detector can be
calculated by inserting this sample surface structurefactequation (6.110).
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6.6 Rough multi layers

Specular and diffuse scattering from rough multi layers lsardescribed in the first Born
approximation and in the distorted-wave Born approxinraf&8], [54], [55], [52]. As the
Born approximation can be regarded as the small scattenmpdf the (correct) distorted-
wave Born approximation only this last approximation wi briefly discussed here.

The procedure for the distorted-wave Born approximatiogsisentially the same as for
the single interface. First an estimate of the wave fundtioihe sample and an appropri-
ate Green function must be established. Then equation)(6af8be applied to find the
scattered-wave function. The final step is to use this seatterave function to create the
mutual coherence function at the detector position andutatie the count rate in the detec-
tor. As before, most authors split the scattered intengtinta specular part and a diffuse
part. The result can be expressed in a form similar to equ#fd.00), where the sample
correlation function can be calculated analytically or muizally from the model usedly,
representing the incident beam, can be calculated usingahex calculations or recursion
relations as given in section 6.2%,,, representing the Green function, can be calculated in
the same way, choosing either the time reversed solutiengsetion 6.4.3) or some other
solution for the smooth interfaces, fit to be used for the [enobat hand.

An important complication is the fact that the roughnessfach interface in the multi-
layercanbe correlated to the roughness of any other interface in thiglayer. To be able
to calculate the effect of these types of correlations magime model for the correlation
between the roughnesses is assumed. Because of theses dspaesults are strongly de-
pendent on the model used. In each specific case carefuldemasons must be made to
avoid the use of wrong models or calculation methods.



Chapter 7

Spin echo neutron reflectometry

7.1 Introduction

Rekveldt was first to consider combining the neutron spirogebhnique and reflectome-
try [56]. In the same way as in small angle neutron scatt€dhgpter 5) it is possible to use
the precession of the neutron spin to code the angle of theamepath through magnetic
flux density regions. It is assumed that the magnetic fluxitiealsanges in such a way that
within the (transversal) coherence length of the beam thgnietz flux density can be taken
constant. Hence, beam splitting effects are ignored an@-t@m neutron flux and 2-flip
neutron flux are sufficient to fully describe the neutron flaxd aneasured polarization (see
section 4.7). Then, the influence of the magnetic flux densitlescribed by means of its
influence on the precession along the classical neutrontipettbigh the instrument.

To describe the neutron path in case of neutron reflecton@iryangles are important:
ag, the angle between the path of the incident neutron (waWewé):and the sample sur-
face and the same for the not-scattered or transmittedoreutt,, the angle the path of
the incident neutron makes with theg-plane. «,, the angle between the path of the off-
specular scattered neutron (wavevegioand the sample surface afigthe angle between
the path of the off-specular scattered neutron and:fhplane. These angles are schemat-
ically shown in figure 7.1.0, is the angle between the path of the off-specular scattered
neutron and the path of the not-scattered neutron. Usirggttefinitions, the wavevector
of the incident neutron is represented by

[ cosay cos B
k=k —sinag , (7.2)
€os o, sin Gy,
and the wavevector of the scattered neutron by
[ cosaycosfy
p=k sin oy, . (7.2)
€os oy, sin 3y,

The polarization precession angle acquired by a neutraeltrg through parallelogram
shaped magnetic flux density regions is given by equatiords énd (5.2). The angle that

85
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AZU

(€73
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Figure 7.1: Definition of angles in spin echo neutron refactjeometry.cy, is the angle
between the path of the incident neutron (represented u;mvé):and the sample surface
and the same for the not-scattered or transmitted neutsgns the angle the path of the
incident neutron makes with the-plane.«,, the angle between the path of the off-specular
scattered neutron (vectpy and the sample surface apg is the angle between the path of
the off-specular scattered neutron and:theplane.d, is the angle between the path of the
off-specular scattered neutron and the path of the notesedtneutron.

is coded by the precession angle br 6;;) is the angle the neutron path makes with the
z-axis in the plane of the parallelogram (see also figure FAis angle can be adjusted by
rotating the magnetic flux density regions around the beasttidn. In figure 7.2 this is
shown schematically. The angle of the neutron path can bedcmdncrease or decrease the
precession angle by adjusting the sign of the magnetic flagitleB; and/orB- (indicated

by the color of the magnetic flux density region) or the ination angle®; and/orf,.

Figure 7.2 (A) shows the instrument if the coded angle befoeesample isj, and after
the sample is eithe#;, or 3, depending on which neutron path is considered (the tratesmnit
or the scattered one respectively). Here, for a not-seatter specular reflected neutron the
precession angle acquired in region | is exactly balanceitiéyne in region II, producing
a perfect spin echo. I, is different fromg;, by scattering in the-direction this exact
balance is canceled and a net precession angle remains.efdiides the probing of the
sample surface structure in thalirection.

Figure 7.2 (B) shows the instrument if the coded angle baferesample isy, and after
the sample is eithes;, or a,, (the transmitted or the scattered one respectively). For th
neutron path for which holds, = «; the precession angle acquired in region | is exactly
balanced by the one in region Il, producing a perfect spiroecthis is the case for the
specular reflected neutron. Hence, it enables the posgitiliseparate (part of) the off-
specular and specular reflection.

Figure 7.2 (C) shows the instrument if the coded angle baf@esample iy, and after
the sample is either«j, or —«,,. For the neutron path for which holds, = —oy, the
precession angle acquired in region | is exactly balanceitiéyne in region II, producing
a perfect spin echo. This is the case for the not-scatteré@duesmitted neutron. Ify, is
different from—a;, by specular reflection the spin echo is canceled and a netgsien an-
gle remains, which for specular reflection is proportionald.. Hence, if the off-specular
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(A) probing in-plane structures in thedirection

Y
x
0s
— A

Region | Region Il Detector

(B) separating off-specular and specular reflection

Region | Region Il Detector

(C) enhanceg-resolution or study of wavy samples

N da—s =

Region | Region Il Detector

(D) spin echo inelastic neutron scattering

Region | Region II Detector

Figure 7.2: Principle of precession angle coding of a sphroawutron reflectometer. (A)
coding angleg;, before the sample ang, or 3, after the sample; (B) coding angte,
before the sample and, or «, after the sample; (C) coding angle before the sample
and—ay, or —q, after the sample; (D) coding the wavelength before and #ieesample.
See also figure 7.1. Region | has a magnetic flux density @ideotthe reader and region Il
a direction from the reader.
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reflection can be neglected theesolution can be enhanced or one can study wavy samples
without loss of resolution or intensity.

Figure 7.2 (D) shows the instrument if the precession argjiedependent of the angle
of the path through the regions, but only depends on the wagéh of the neutrons. This
can be realized by making the inclination anglesand 6, equal torr/2. A perfect spin
echo is produced if the precession angle acquired in regisrekactly balanced by the
one in region Il. Hence, if the wavelength of the neutron is cttanged in the reflection
or scattering process producing. If the wavelength is chdrgy a non-elastic scattering
process, a net precession angle remains, which is propattio the change in wavelength.
This is the standard spin echo technique as introduced byMethe 1970's [32]. In the
following section the above instrument options A to C willdiscussed in more detail.

7.2 In-plane structures

The in-plane structure of the sample can be determined bysrafoff-specular reflection
as was discussed in the previous chapter. Then, the samfdeesstructure factor is deter-
mined from the measurement of the neutron count rate at kbnearg detector positions. As
all direct scattering techniques this is done in momentamstier-space ap-space. Using
the spin echo technique this is converted to real-space lapgpropriate Fourier transform
using the precession angle coding of the momentum tranefés.was first experimentally
tested by Felcher et al. [57] in 2002 and repeated in 2003 [58]

As only elastic scattering is addressed here, the momemamsfer is completely de-
termined by the scattering andle, or the difference betweem, anda, and betweert;,
andg,. These are the angles which can be encoded by an apprograite of the align-
ment of the precession regions | and Il. It is assumed thatdherence matrix can be split
up in the mutual coherence function of the wave function walemagnetic flux densities
were turned off['y (71, 72, 7) and the reduced coherence mafjix(i , 72, 7) as defined in
section 4.2: N

F(Fl,FQ,T) :Fo(Fl,FQ,T)aB(Fl,FQ,T). (73)
The propagation of the mutual coherence functianis discussed in the previous chapter
and given by equation (6.94). Again, if the sample dimensicain not be neglected the
sample should be split up in several smaller samples (each tatger than the coherence
length) and the resulting mutual coherence function is ith@ferent) sum of all separate
contributions. Under the conditions as discussed in th@dluiction of this chapter the
propagation of the reduced coherence matrix is given by

~

Vp(71, 7, 7) = D(7a, 1575 (1, 15, 7) D(71, )T, (7.4)

the same form as equations (4.23) and (4.25), where theamsvi are defined in equa-
tion (4.28) and describe the magnetic flux density inteoactiith the neutron wave func-
tion traveling fromﬁ1 or r72 on the neutron source g or > on the detector via the sample
surface. For a completely unpolarized neutron source thexntas (r71, r_’;, 7) reduces to
f/2. As in section 5.1 the device matrix between polarizer anqgér for the spin echo
instrument is given by:

~ - ~
/

E(F, ) = R(r, ?) T (¢11(7)T= (61 (k) R(+, 7), (7.5)
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whereR (i, 7) is the device matrix of the rotator before region | a@d”, 7)! the same for
the rotator after region Il and

¢1(k) = —cAB1L1(1 — By tan 6y) (7.6)
and .

¢11(p) = —cABaLa(1 — 3, tan 0y). (7.7)
If the sample scatters non-magneti¢,= 92 andB;L; = —BsLo the device matrix for

region |, the sample and region Il is juBt(l,. qu) whereg,. = ' — k is the wavevector
transfer at the sample position, the direction/gfis the coding direction (her&;) and
lse = cA’B;1 L tanf, /2 is called thespin echo lengthThe polarizing factor oE(r )
is:

Pp(7, ) = (1= PR, 7)) cos { e+ @ b + PR(7.7), (7.8)
where Py, is the polarizing factor of2(+, 7). For a perfect spin echo instrument the fac-
tor before the cosine must be maximal and the other term nainhinencePr = 0. The
complete device matrix is found by including the polariigpper and analyser:

- -
/ /

D(7,r7) = Da(7,r")F (7, ") E(7,r") Dp(7,17), (7.9)
whereD p corresponds to the device matrix of the polarizléja, of the analyser (see equa-
tion (4.37)) andF of the flipper just before the analyser (see also section 47)the
following it is assumed that these device matrices are eostHenceD only depends on
p — k. The detector count rate can be found by integrating equéi®) over the detector
area:

Iy = QUp/ Tr(L(7y, 74, 0))d>rq, (7.10)
Aqg
whereA, is the detector area perpendiculampand assumed large enough to capture all

scattered or reflected neutrons. Inserting equations, (7.3), (7.9), (6.94) and (C.28) this
yields for a completely homogeneous, incoherent and ungelhsource with ared:

= [ [ e SR D (7.11)
Aq J Ao 71-"“ds 90

where

=~

Qu(f— k) = %Tr (f)(ﬁ— ) D7 — E)T) (7.12)

andk = k(s — 1) /rs0, 7 = k(74 — 7s0)/ras andr is the source position. Again, if the
sample dimensions can not be neglected the sample shoufdibagsin several smaller
parts (each much larger than the coherence length) andghking detector count rate is
the sum of all separate contributions, yielding:

Jo - I
" Amrg 3 As a(p - s . 7.1
! /Ad /AO /Aé 47T7’ZSTEOAS Sk(pv k) d(p k‘)d red’r'dry ( 3)

The 2-shim count rate can be determined by repla@ing the above equation B§jp 74 /4
whereT» andT'4 are the transmissions of polarizer and analyser respéctive

TPTA/ / / Jo T
I, = ———————Sk(p, k)d*rsd*r'd ry. (7.14)
4 A, Jay Ja. 47rr(2isrfoAs (P, k)
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The 2-flip count rate is found by replacity; by TpT s Pp PaPr(p — E)/4, yielding:

TpT P P - .
Ip=LAF A/ / / Sy (P, k)P (5 — k)d>rod®r' d®rq.  (7.15)
Ao 47r7‘dS A

The integral over the detector area can be transformed tategral overp, andp, and the
integral over the source area can be transformed to an altegerk, andk.:

S i wecl N O O I LT 2
e S k)P — k)dp.dp,dk.,dk,d"r.
¥ 1 A47Tk . A % (D, k)P (P — k)dp.dp, yd-r

(7.16)
This integral can be evaluated by realizing that in the cassideredPz only depends on
the differencep, — k.. Further, the sample surface structure factor only depengs— k
andk, andp,. If the detector is wide enough the integral oyergoes from—oo to 4-co
and can be replaced by an integral oger= p. — k. and the same range:

TpT4PpPa . )
I = 1, 1 P z z S
f 4 A, 47Tk / / aks / {/ k)dk"dp"} 5 (@2)dQxd"r

(7.17)
Furthermore, if it is assumed that the distanegsandr, are large compared to the sample,
source and detector dimensions, then the argument of tegraitover the sample surface
is constant and the above equation is reduced to:

TpTAPpP
If— prlaAalp A47rk4/ dk‘/ {/ / Sk dk‘ydpy}PE(Qz)sza (718)

and the measured polarization becomes:

sz {fp,/ fkv Sk(p, E)dkydpy} Pp(Q.)dQ.
P,, = PpPy4 v _ .
Jo. {0, S, Sk F)dkydp, } dQ-

The factorPg(Q.) is given by equation (7.8). In the ideal spin echo instrunignt= 0 and
the integral over), represents a cosine transform (or the real part of a Fouarsform)
of the sample surface structure factor, hence the abovdiequeecomes:

Gr(lse)
G, (0)’

Gr(lse) =R (/ {/ / Sk(p' dkydpy} llede2>, (7.21)

comparable to equation (5.27)7,.(r) is a one dimensional sample correlation function.
For standard neutron reflection geometry (see figure 6.1)ahge of integration ok, is
determined by positio/ and the widthiV,, of the entrance diaphragm and the range of
integration ofp,, by positionH, and the widthD,, of the diaphragm before the detector. In
general these ranges are quite small and the integratiorkpeadp, can be interpreted as
a resolution effect.

(7.19)

P,, = PpPy (7.20)

where
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One should realize that the validity of this last equatiopetels on several conditions,
which were mentioned during its derivation. The most imaotrtones are the quality of
the spin echo instrument, which determidgg((.) and the small size of the sample com-
pared to the distance between sample and source and samdpdetactor. In (spin echo)
small angle neutrons scattering instruments this condis@almost always met. For neu-
tron reflectometers large sample sizes are more common.sinwere the sample size is
too large deviations might occur and one should use equétid) instead. Another im-
portant condition is that the sample correlation length thgrobed {,.) is smaller than
\/Tds/]_f. Otherwise the equations used to calculate the scattetetence function should
be calculated using its definition and equation (6.89) ferdbattered-wave functions, with-
out neglecting the differences between the two vegiofsnally, the magnetic flux density
should be homogeneous over the probed length, otherwisediighe coherence matrix
propagates is not accurately described by equation (h4alt case no analytical solution
has been found for the propagation of the mutual coherent®xnoa (which is the same)
polarization of the neutron beam.

If the sample surface structure factor can be calculated égns of the phase-object
approximation (see section 6.5) the one dimensional sacgptelation function becomes:

Gy () / / (5. F)G (1ue)dky dp, (7.22)

where
Gl(lse) =R ( / E[e‘iQ”(H(m-*”’z-*J’l-“)_H(zs’Z-*))]dx) (7.23)

and it was assumed thél, ~ 0. Ignoring resolution effects the measured polarization
reduces to: )
GT(ZSE)

Gr.(0)
Plomp et al. [59] used this formula to describe his measunésren a grating (the same as
of Felcher et al. and Major et al. [57], [58]), explaining baheirs and his results.

P,, = PpPy

(7.24)

7.3 Separating off-specular and specular reflection

It was first realized by Pynn et al. [60] that the specular cééle part could be separated
from the off-specular part by changing the coded angte,tand—«,, as shown in figure 7.2
(B). Then it is possible to separate the neutrons that arectefl in the specular direction
(ayy = —ay;) from the neutrons that are reflected or scattered in thes#ifbr off-specular
direction. If the sample scatters non—magneﬁticf —05 and By L, = — By L5 the device
matrix for region |, the sample and region Il is jast(/,. (p, +k,)), Wwherep, andk, are the
components perpendicular to the sample surface of the wat@vof the incident respec-
tively the scattered-wave function. Agdin = c\2B; L, tan 6, /2 is the spin echo length.
Equations (7.14) and (7.16) are still valid because up ® point in the derivation in the
previous section no assumptions were made for the codiegtitin. Now equation (7.16)
can be evaluated by realizing that in the case considegeadnly depends ok, + p,:

TpTsPpPy / / / /
Iy = dp.dk. P ke )dpy dh, d*r.
f 1 1 47rk4 e Sk (7, k)dp B (py + ky)dpy r

" (7.25)
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If the sample size is small compared to detector-sample ants-sample distances this
becomes:

TpTaPpPs

Iy = Sy (7, k)dp.dk. P ky)dp,dk,. (7.26
f 1 47rk4/ky/py/z . w (5, k)dp e (py + ky)dpy (7.26)

Assume as before (equation (6.42)), the sample surfacetsteufactor can be split in a
specular and diffuse component, which are given by equa{®il2) and (6.113), then the
specular part becomes:

TPTAPPPA Jopp As

where it was used that for the specular pgrt= —k,. Note that this part does not depend
on the spin-echo length. The diffuse part becomes:

TPTAPPPA JopgA
N 44

1= / / / Salp, K)dp.dk. Pe(p, + k,)dp,dk,. (7.28)
k. Jp.
Hence, if now the spin-echo length is varied, the speculdripaonstant and the diffuse
part changes according to the above equation. This endlglelietermination of the specular
and diffuse part separately.
As an example, if the diffuse part varies slowly and theandk, range is limited, the
diffuse part can be taken constant and the above equatidhealiffuse part becomes:

TpTaPpPa Jopi A / /
I{~ 2z b Sa(, k)dp.dk., 7.29
! 4 Ank? a(p. k)dp (7.29)
where
max pma—r
/ / 5 (py + ky)dpydk,, (7.30)

kmin min

is dgtermined by the instrument properties only. P is given by equation (7.8) and
Pg(r',7) is taken constant, this becomes:

1—P3 Ak, Ap, -
7 = PiAk,Ap, + TR4 sin (z 2’”) sin (l 5’) cos (Lse(ky + py)) . (7.31)

WhereAky = kmam - k771i7lv Apy = Pmaz — Pmin, ];:y = (kma'r + k‘min)/Q andﬁy =
(Pmaz+Pmin)/2. Hence, if the spin-echo lengthlghenZ = 1 and when itis large enough
(lse > Aky, Apy), Z reduces to the first term, which for an ideal spin echo insénirs0.
Hence, the diffuse part averages to zero and the true spgartaemains.

7.4 Enhanced resolution or wavy samples

Rekveldt [16] showed that by changing the coded angte,tanda,, as shown in figure 7.2
(C) it is possible to increase the resolution of the measargrof the specular reflectivity
without reducing the intensity of the neutron beam. If thengke scatters non-magnetic,
0, = 0y and B, L; = —Bsy Ly the device matrix for region I, the sample and region Il is
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just fz(lse(py — ky)), wherep, andk, are the components perpendicular to the sample
surface of the wavevector of the incident respectively ttegtered-wave function. Again
lse = cA\’ B Ly tan 0 /2 is the spin echo length. Equations (7.14) and (7.16) atevatit
because up to this point in the derivation in the previoui@eno assumptions were made
for the coding direction. Now equation (7.16) can be evaddy realizing that in the case
considered her&g only depends op, — k,,. Both the specular and the diffuse part can be
accounted for.

Further, if the diffuse part is ignored this method can bedusencrease the resolution
without a loss in intensity. For the specular parf & —k,) equation (6.104) is used:

S5, K) = R(py,)p2As6@ (q)), (7.32)

which inserted in equation (7.15) yields:

TpTyPpP .
Ip=-2AF A/ / / R(ky)k20®) (5 — ky)) Pp (2ky ) d?rod?r' d?rq,
Ao 47T’rds s0

(7.33)
wherek = k(7 — 1)/, p = k(7 — 7s)/ras andr’ is the source position. If, again the
sample size can be neglected compared to the sample-sastarece, this reduces to:

TPTAPPPA Jo

1 V26@) (5 — K1) Pp(2k, Vd2r d2 734
F= 4 a7y y2 sO/Ad AR(kJ)k(S (@) kH) 5 (2ky)d*r'd*rq.  (7.34)

The two-dimensional Dirac-delta functioi@)(m — IZH) represents that only specular re-
flection is taken into account. Therefor it is possible teethkth a large detector area and a
large source area (entrance diaphragm). The above eqta¢iomeduces further to:

TpTsPpPa JoA Ak,
4 Akt

Iy = / R(ky)k; Pp(2ky)dk,, (7.35)
0

whereAf. is determined by the width of the entrance diaphragi(/r,) or the width

of the detector diaphragnk¥,/r;s) or both. The functionPg(2k,) in the ideal case is

cos(2kyl,.) so that the above formula represents the real part of theidfauansform of

R(ky)k2:

TpTaPpPs JoAs Ak,
4 Ak

Ip(le) = / R(ky )k cos(2lseky ) dky, (7.36)

This Fourier transform can be back transformed to yie(q):

1 16k* o
R(q) = A% /0 I (lLse) co8(2lseq)dlse, (7.37)

q* TpTaPpPalJoAs
Hence, in principle it is possible to determine the reflattiof the sample with an com-
pletely uncollimated beam.

However, practically a problem arises due to the propedigke back transform of the
Fourier transformation. The spectrufn(l,.) is determined with a finite accuracy due to
counting statistics. The law of error propagation for Feutransforms roughly distributes
the counting statistics evenly over the transformed speattif the reflectivity changes from
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1 to 102 in the interesting range this forces the statics for the wimotasured spectrum
to be better than0—3, which is rather impossible. This problem becomes even eviims
larger reflectivity ranges. The solution for this problertoidimit the reflectivity range to be
measured. This can be accomplished by either limiting thiecgoarea or the detector area.
Then, the limits of the Fourier transform in the above eqrato not extent frond to oo

but fromg — Aq to ¢ + Aq, where bothy andAq are determined by instrument parameters.
For the geometry presented in chapter 6 and a source limsttngtiong = kH/r, and
Aq = kW, /2r, while for a detector limiting situation = kH,/r.s andAq = kWy/ras:

Iy

TpTaPpPa JoA Ak, [9T21
_ TpTaPpPa Jod, k/ R(ky )k Pg(2ky)dk,, (7.38)
q

4 Akt “Aq
which can be interpreted as the (real part) of the Fouriersfam ofR(ky)kg, where
R(k,) = R(k,)Res(k,) whereRes(k,) is a resolution function, in this casees(k,) =
u(ky + g + Aq) — u(ky — g — Ag) andu(x) is the Heaviside step functiom:(x) = 1 if
x > 0andu(z) = 0if z < 0. If the sample is not perfectly flat but has a certain amount
of waviness this can be translated into an adaptation ofgkelution function. Further if
the source is not exactly homogeneous or incoherent thistseis a different resolution
function also. The combination of all possible effects etwlGaussian shaped resolution
function.

In case a multi-detector or a position sensitive detectarsesd to determine the count
rate/; the above equation changes to:

Iy =51, (7.39)

where
I(,;) _ TpTsPpPs JyAsAk,
Fo 4 Ak

and the limitsg; are determined by the corresponding limits of the channalwhich the
counts are collected. For each channel the back Fouriesftian can be done, resulting in:

qi+1
/ R(ky)k; Pg (2ky)dk, (7.40)

qi

1 16k*
B q2 TPTAPPPAJ()ASAkZ

RO(q) / 19(00) cos@laeg)dlse  (7.41)
0

and all channels added together yield [16]:
R(q) = %R (q). (7.42)

The advantage of this method is that in each channel the tdetemunt rate due to low
reflectivity is not blurred by the statistics of counts duénigh reflectivity. Note that this
method is independent of the actual valggand the scaling factor before the integral also
does not depend on eithéor ¢;. Hence, all detector counts are used so that no intensity
is lost and the division of the detector area in channels eaaptimized for each experi-
ment, depending oR(q), the waviness of the sample and the available neutron aaynti
statistics. A limitation of this method is that it should besgible to perform the back
Fourier transform. Hence one should measure toward laiigeegimo lengthsi(.) for the
enhanced resolution and one might use an artificial filteimid br reduce oscillations after
the transform [61]. The wavevector transfer resolution kgl of the order ofr/lsc mas -



Chapter 8

Concluding remarks

It is possible to use coherence theory to describe progagafineutrons through neutron
scattering instruments. Coherence theory describes tipagation of the ensemble average
of the neutron wave function. Coherence theory as adoptex] baly considers neutron
wave functions, having approximately an equal amount @fl etergy, denoted bguasi-
monochromatiovave functions. This is due to the dispersion relation ofteravaves,
and hence the interference between non-monochromatic fuaedons, can in general be
ignored.

One advantage using coherence theory over standard sugttieeoretical considera-
tions is the incorporation of instrumental and source ¢$feBy means of coherence theory
it is possible to accurately calculate scattered neutrtamsities, given the full instrumen-
tal details. It was shown that in all scattering cases it issfile to retrieve the results as
published in literature by introducing appropriate appmations. The introduced approx-
imations are documented so one can asses when a particplaxapation is valid and
when it is not. Further it was shown that also neutron poddian effects can be described
by using the coherence matrix approach. This enables uadéiag of beam splitting ef-
fects due to magnetic flux density variations and indicatesmthese effects will become
really measurable in real neutrons scattering devices.

Another advantage of coherence theory is that in principlegnversion tanomentum
space(or g-space) is needed. All scattering phenomena can be deddrilyeal space
The Fourier transform to go from real space to momentum spadevice versa is con-
tained in the propagation formula for the mutual coherencetion or coherence matrix.
This formula describes the propagation of the mutual catesréunction through free space
(vacuum or small interaction potential). It must be emphedihat scattering of neutrons is
not incorporated in the coherence theory. It only deals pitipagation of neutrons before
interaction with an scattering object and after it.

Interaction with the object itself is described by mean$efttime-dependent Schrodinger
equation for a (polarized) neutron wave function. Here,etehce lengths and time do
not play any role because these are related to coherencerpesponly, not to the wave
function. Hence, one should realize that a neutron wavetiuméscatters’ from the whole
of the interaction potential, not just from the part of théenaction potential covered by
the coherence lengths (coherence volume) and time of thieameensemble average (or
neutron beam). Although this seems obvious at first, it caofe confusing when trying
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to understand the scattering of neutrons in real space.

In chapters 5 and 7 some aspects of the potential of neutinrcgging techniques are
described. In these examples always the neutron spin isditeged to some angle and then
rotated backwards toward its starting position. This is \tly calledspin-echdechnique.
Mezei was the first to apply this to the coding of the energydfar of the neutron in a scat-
tering process [32]. However, other applications are ssihich are not to be ignored.
In these applications the spin coding technique is usedda kach neutron with a special
property of the neutron. An example is the coding of the regmwavelength in neutron
Larmor precession transmission experiments [62]. Anatxample is the coding of a spe-
cific component of the neutrons wavevector (for instancegrmdicular to a Bragg-plane) in
neutron diffraction experiments [63]. This enables highelution neutron diffraction ex-
periments, yielding accurate information on crystal ¢&&ttspacings, comparable to X-rays.
Hence, spin-echo coding techniques are expanding newtattesng applications to limits
never thought possible with conventional neutron scaitetechniques.
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Appendix A

Rotation matrices

A rotation matrix is a multiplication of rotation or streamgi matrices only and can be
described with three real functions:

g_ L ( VIFPee iVT—Pel
V2 \ iyI=Pe P TxPe i )’
where|P| < 1 anda, 5 andP are all functions of’andr’. Pis called thepolarizing factor

of the matrix. This matrix can be interpreted as an effectotation of the polarization
vector over an angl2d around a normat as shown in figure A.1, for which holds:

(A.1)

H=Tcos —i (ngGy + nyoy +n.0.)sinb, (A.2)

or becausén, s, + n,o, +n.5.)> = I:

~

= ¢~ 10 (ny0y +ny0y +n.0>) (A.3)

«, f andP can be expressed in termsandi:

P=1-2(1-n?%)sin?0, (A.4)
tana = —n, tanf (A.5)
tanf = —ny/ny (A.6)
or reversed:

Nngsinf = — L-r cos 3, (A.7)
Ny sind = _2 sin 3, (A.8)

1+ P
n,sinf = — + sin av. (A.9)

A typical property of rotation matrices is that the produfdino rotation matrices is another
rotation matrix. Further properties are:

HH' =T, (A.10)
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det H =1, (A.11)
Tr(z.Ho. HY) = 2P. (A.12)

Notice further that any rotation matrix can be transfornred sum of a matrisZ, and

A- ,/#i@a) + M#ﬁz(w), (A.13)

= 0 ie'm/?
Ee= (5t ) (A1)

where

is aflipping matrix This matrix can be interpreted as an effective rotatiomefdolarization
vector over an angle along a normali in the (z, y) plane as shown in figure A.2. Some
special matrices and their properties are shown below:

F.(B)T.(a) = F.(3 — a), (A.15)
T.(B)F.(a) = F.(8 + ), (A.16)
F.(B)F. (o) = ~T.(8 — o), (A.17)
I.(B)T:(a) = To(8 + ), (A.18)
F.(a)6, = —5,F.(—a), (A.19)
T.(2)5, = 6,T.(—a) (A.20)
and

TrG,T.(a)) =0, (A.21)

Tr(F.(a))

0
=0, (A.22)
% (A.23)
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Figure A.1: Effect of rotation or streaming matrix on rotatiof polarization vector from
Pyto P,.

Si

Figure A.2: Effect of flipping matrix on rotation of polarittan vector fromP, to P, if the
polarization is parallel to the-axis and from?] to P otherwise.
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Appendix B

Rough surfaces

Roughness of surfaces can be described in several ways., iHerémportant to model
the optical potential at the interface as changes in thismi@l causes neutrons to scat-
ter. Let the height of the surface above theplane be given by a functioH (z, z) (see
figure B.1).The height-height correlation function is giugy:

1
C(x,z) = A_/A H(xg,25)H(xs + x, 25 + 2)dasdzs, (B.1)

where the integration is over the sample surface atgaln the following it is assumed that
H(z, z) has a Gaussian random distribution. The first moment (olegedrofH (z, z) is 0.
The second moment (or variance)id{z, 2) is defined asoz? = C(0,0). The expectation
value ofe’e"(+:2) known as theharacteristic functiorof H (z, z), is given by:

E[equ(.t,z)] — e—q202/2_ (BZ)

Further it is assumed thaf (1, 21) — H (2, 22) has a Gaussian random distribution with
zero mean too and its variance only dependspr z2 andzs — 21:

g(w,z):<[H(ws,zs)—H(azs+x,zs+z)]2> K (B.3)
y H(xl,zl)
oSN
SAvanwad
H(.TQ,ZQ)

Figure B.1: Height distribution of a rough surfadé(z, z) is the height above thez-plane.
The average off (z, z) is 0.
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where the average is taken over the whole sample area. Nuitg#h ) can be reduced to:
g(xv Z) = 2(0(07 0) - C(.T, Z)) (B4)
Note that the expectation value @f (7 (#s:2s)—H(zs+2.2:+2)) ig given by:

E[eiq(H(ass,zﬁ)fH(a:5+m,z§+z))} _ e,qu(;p,z)/Q. (BS)

For a discussion of possible height-height correlatiorcfioms see for instance [40] and
[64].
The optical potential of the sample is modeled as:

Viz,y,2) = uly + d)u(H(z, 2) — y)W, (B.6)

where 1 is the optical potential of the (homogeneous) sample natésee also sec-
tion 3.3),d is the thickness of the sample in thalirection andu(y) is the Heaviside step
function. Note that it is assumed that the interfacg at —d is completely flat.



Appendix C

Scattering at surfaces

The scattering at a smooth surface results in a change dhtiigent mutual coherence
function into thescatteredmutual coherence function at the scattering position. Im-ge
eral a mutual coherence function describes the correlmt@tween two wave functions
propagating through free space according to its definit®gigen by equation (2.6). To
find out what happens in the scattering process the Schgédaqguation must be solved.
Depending on the problem at hand (the optical potentiatidigion and the scattering ge-
ometry) sometimes a general solution can be derived frosnihve equation, coupling the
scattered-wave function to the incident-wave functiorthincase considered here (specular
and off-specular reflection at a smooth sample surface)rgmtin conditions the general
solution can be expressed in terms of wavevector distobsti Here, the incident-wave
function is assumed to be a distribution over plane wave @orapts and each component
is scattered in its own special way. After scattering all poments are added, forming the
scattered-wave function. Hence, in the following the ielabetween a mutual coherence
function to the desired components of the wave functionssulised first. Then, the inci-
dent mutual coherence function is transformed to the seattene by applying the solution
of the Schrodinger equation to each of the components adithg@dhem. Finally, this is
applied to find the scattered mutual coherence functioneadi¢tector position.

C.1 Wavevector distribution of mutual coherence function

Let (7, ¢) denote a neutron wave function characterizing the field ettptat timet. The
neutron wave functio® (7, ¢) is constructed by its constituting monochromatic planeava
components (see also section 2.1):

(7 t) = et / (k, 7)dk, (C.1)

wherek is the wavevector, = hk?/2m andm the neutron mass. If furEherLt is assumed
that the beam is directed to positive value'scaindz only, the wavevectok = k| + k€,
wherek, = k - &, so thatk, = —, /k2 — k;ﬁ The negative sign denotes that the plane wave
is traveling in the—y direction. The plane-wave components can be described by:

Y(k,7) = %(EH)e“Z"? (C.2)
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Hence, the neutron wave function can be described by:
(7, t) = e Wkt / ei’z'%(lz‘,)d%”. (C.3)

Note that the mutual coherence function can be describedéwgliove variables using its
definition (2.6):

F(_'l 77 = 72“”“7// k‘l,’l“l k‘g,’l"g)>d kl Hd ]{ig IB (C4)
which can be reduced to:
(7,7, T) = 6_“””//<¢o(E1,|\)*¢o(E2,\|)>6““2'F'Z_ikl'Flkol,\|d2k2,|\~ (C.5)

From this equation it follows by inverse Fourier transfotio:

<¢o(k1 1) %o (Eay) H = 164 // TR T (7 7y, 0)dry, |d*ray. (C.6)

If the mutual coherence function is homogeneous (only deéipgnon+, — ), then this
reduces to: ~ ~
0P (k) — ko)

A2 W(Flﬂ E2,H)7 (C-7)

<1/fo(/g1,|\)*1/fo(/gz,|\)> =
where
W (7, k) = /e*i’“n*‘nr(a,a + 7, 0)d?ry, (C.8)

is the wavevector distribution.

C.2 Scattering at a smooth sample surface
The incident-wave function at the sample surface can besepted by:
\I/m(’F, t) = Wt / €i’;'F¢o(EH)d2k”. (C.9

and following the derivation given in section 6.2.1 the s&r&d-wave function in the far-
zone can be expressed as:

WD (7t) = et / plky)e 2R e Ty () ) d Ry, (C.10)

wherek, = —, /k? — k;ﬁ By takingp) = EH andp, = —k, this equation can be rewritten
as:

v (7 t) = e_i“”‘t/p(py)eiﬁ'%o(md%n- (C.11)

If it is assumed thatlose to the sample surfabeth the incident mutual coherence function
and the scattered one are homogeneous, the wavevectdndistr of the scattered mutual
coherence function is defined by:

WGC(FlamO = /eiiﬁu 7 Fsc(":“lv 71+ 'FH ; 0)d27‘” . (ClZ)
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Using the definition of the mutual coherence function andrdftserting equations (C.10)
and (C.7) this becomes:

WO (7, 5)) = R(py)Win (71, 57), (C.13)

where R(p,) = p(py)*p(py). The mutual coherence function can be determined by a
Fourier transform of equation (C.13):

Lo s L
PV +7),0) = 5 / PR (py)Win (71, 5)d%py. - (C.14)

InsertingW;,, this becomes at the sample position:

1 o
OO (7, 7y 47y, 7) = P TI=S0T, (Fy, 7s + 31, 7)R(p, )d>pyd®sy. (C.15)
™

C.3 Mutual coherence function at detector position

Equation (6.10) can be used to calculate the propagatidmeofiutual coherence function
to the detector:

‘2 s =
Fsc(":“da de O) = / Cozb—fm / e_lp'rrsc(Fla _'1 + F, O)d2rd2’l"1, (Cl6)
y=0

2
y=0 T A

wherep = k(7; — 1) /r41. The inner-integral of this formula is the Fourier transfiasf the
mutual coherence function at positiGnon the sample plane, the same as equation (C.12),
so that: )

Ty (7, 72, 0) = / %Wsc(a, §)d>ry. (C.17)

y=0 Ta1A

Hence, the mutual coherence function at the detector posgi proportional to the sam-
ple average of the scattered wavevector distribution, whisrassumed that at the sample
position the mutual coherence function of incident andtecadl wave are homogeneous
and the sample correlation lengths are not too large. Iftltesditions are not fulfilled a
more elaborate derivation is needed, based directly onehieadion of the propagation of
the mutual coherence function as given by Mandel [1]. Actcwydo equations (C.10) and
(C.5) the scattered mutual coherence function is given by:

F(O )(7"1 Py, T) = e R x (C.18)

[ [ #0107 0020 )"0l ) 77
Inserting equation (C.6) yields:
Fg(t):’O) T], 2, T // an T 1,T 2, )d27’/1’”d27'/2,‘|, (Clg)
where

* - L=
E(Tfl, T’2) = //efzpl-rﬁrzpz-rz %ezm.wlfw?r 2d2p1’”d2p2,“ (C.20)
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To solve this integral equation th&eyl representation of a diverging spherical wase
used [1]. This transforms an integral ovgrinto a Green function:

[e’e) eiE-'F’ eiET
/ p d*ky = 2r—. (C.21)

oo Ky (18

If both sides of this formula are differentiated with respecy and interchanging the order
of differentiation and integration this becomes:

0 - ikr
/ R Tk = QWBQ le_ 1 : (C.22)
— 00 Yy wr
In the far-zone the differential at the right-hand side bees:
ikr ikr
2 le, ] = kcosf , (C.23)
dy | ir r
wherecos 0 = €, - #/r and hence
o L _ eifcr
/ e*Td?ky = 2mk cos @ —. (C.29)

Inserting this result in equation (C.20) and assuming plat,,,) andp(ps,,) are constant,

yields:
eiE(RQ —R1)

RiRoN2

— —

(r'1,7"2) = p(p1,y)"P(p2,y) cos 01 cos b

[1]

(C.25)

whereR; = ‘F’i — 7| andcosb; = €, - ('; — 7)/R; andp; is a wavevector with length

k and a direction that corresponds to the directioﬁpf— 7; . Note that for the derivation
of this formula it was used that the incident mutual coheedinioction was known on the
sample plane. Instead of using the sample plane any plahéandls long as one takes care
of the correct values faw(p1 ,,) andp(p2.y)-

C.4 Wavevector distribution for an incoherent source

Equation (2.31) and equation (2.36) can be used to calctlatecident mutual coherence
function for a completely homogeneous and incoherent souith areaA:

Jo (7
Lin (71,71 +7,0) = kT (P =) 1 g2 0 C.26
(71, 71+ 70) 2u,dmr? /Aoe ™ ( )
so that P
Win (71, k) = 0 i) - (P =R/ =R)) g2 424 C.27
(71, k1) Qv Amr? /Ao/e ryd=r, (C.27)

which can be reduced to:

S B
Wi (0, ) = 225 /A 5@ (kw - k|> &2, (C.28)

2upr] 1



Appendix D

Scattering at rough or structured
sample surfaces

Following the derivation given in section 6.4 the scattenee function can be expressed
as (equation (6.73)):

- 2m

bk, 7) = O (k, ) — ) / GO(F, 7V (7)) (k, 7 ) dr. (D.1)

To solve this equation a precise estimate of the Green famatid the undisturbed scattered-
wave function is needed.

D.1 Green function

The Green function for scattered waves can be approximatéaking the Green function
for scattered waves for the undisturbed potential [43]],[#8] defined by:

_ 2 O (7,
<v2 LB WT”) G (7, 7,) = 87— ), (D.2)

where theV? operator represents the derivativesjo It can be solved by supposing the
Green function can be factorized (see section 6.2):
1 o0

G(+)(F7 Fs) = 4_2 eiﬁ”'(;‘iﬁ)g(pyvyays)d2p\|7 (D3)
™ Jo

wherep'is a wavevector with length andg(p,, y, ys) is a one-dimensional Green function
perpendicular to the surface. Note, thayip,,y,ys) would be equal tars(v=v-) /2ip,
this formula can be converted to Weyls representation ofreerspal wave, which in the
far-zone reduces to (conform equation (C.21)):
Ty G e ikl7 =75 o4
(F,7s) = o(r—rs)—m. (D.4)
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Inserting the factorized Green function in equation (Dr2j averse Fourier transforming,
yields:
82g(pya y7 y9)

D07 + 059y v ys) =0y —ys) ¥ > vo, (D.5)
82 ) b S
% + (0)*9(pys v, 4s) = 0(y —vs) ¥ <o, (D.6)

wherey is the position of the interfacpgj =+, /p% — k2 andk? = 2mVo/h2. The accent
denotes the value of the variable in the sample materiallEmg@asitive sign is taken as,

is also positive. The method of variation of parameters canded to find the particular
solution of these in-homogeneous linear second-ordegréffitial equations [65]:

2i;y fifoo (e—ipy(t—y) _ eipy(t—y)) S(t—ys)dt  y > yo

9p(Pys Y, ys) = , (D7)
L (e D) ot gty <

2ip],

which if ys < yo can be reduced to :

1 i), (Ys— —ipy, (ys—

T (emy(y y) _ =iy, (y y)) Y >y,
gp(py,y,ys) = (D.8)
0 Y <Ys

and ify, > yo

27:;?/ (eiipy(yﬁfy) _ eipy(ySiy)) y 2 ys

gp(py,y,ys) = . (D.9)
0 Y <Ys

The complete solution for the in-homogeneous differeriiplation can be found by adding
the particular solution to the solution of the homogeneafisréntial equation. Ify; < yo

the Green function foy > y, should only have a component away from the surface in the
+y-direction. Fory < y it should only have a component in the-direction, hence:

c1 ePvy Y 2 Y0

g(py,:%ys) = Clze*ip;,y + 22’1)’ (eip;/(ys*y) _ efip;,(ysfy)) Ys <Y < Yo (D].O)

v
/—iple
che Py Y < Ys

and if y; > yo the Green function foy > ys should only have a component away from
the surface in the-y-direction. Fory < yg it should only have a component in they-
direction, hence:

dyePvy + ﬁeim(y—ys) Y > ys
9(pysy,ys) = dre™v + %pyeipy(y“y) Yo <y<uys . (D.11)

dlze_ip;’y Yy <Yo
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77 infar-zone

p(py) Ts”

Figure D.1: Propagation of Green function from a souftef disturbance above the sample
surface to an observation point in the far-zone.

These solutions and their derivativegtmust be continuous gt= o, hence ify;, < yo:

ﬁ;—(py)eipy(yfyo)fip,’y(ywyo) Y > yo
9Py, ¥, ys) = y y (D.12)
22‘;;/ (ezpylysfy\ _ p(py)efzpy(yﬁyﬂyo)) ¥ <o
andify, > yo
Ti’)u (p(py)eipy(ys-&-y—?yo) + eipy\y—ysl) Y 2 Yo
9Dy Y, Ys) = 4 B ; (D.13)
ﬁT(py)elpy(ys—yo)—my(y—yo) Y < Yo

wherep(p,) = (p, — p},)/(py + p},), the reflection coefficient of the wave reflecting at the
sample surface;(p,) = 2p,/(py + p;,), the transmission of the wave function traversing
the sample surface from outside to inside aitgd,) = 2p}/(p, + p;), the transmission
of the wave field traversing the sample surface from insideutside. The Green function
can be seen as the propagation of a disturbance startingtfrersource point;s toward
the observation point. If the disturbance starts above the sample, there are tasile
paths for the disturbance to reach the observation poietfigare D.1). One directly and
one reflected by the plane surface. The phase differencesbatihese paths obviously
depends on the distance to the surface and for small scatt@nigles and in the far-zone is
just2p,y,. If the disturbance is in the sample there is only one waydeciighe observation
point, where the disturbance first propagates through timpkeauntil it reaches the surface
and is partly transmitted with a transmission coefficigft,) = 2p,,/(p, + p;) depending
on the angle (see figure D.2). The transmission coefficieatisally the one of a plane
wave traveling from the inside to the outside, but after tmsing the Green function it
is transformed to the one of a plane wave traveling from thiside to the inside, which
in this case are closely related. After the transmissiordisieirbance propagates further to
the observation point. The phase difference with the wappasedly transmitted from the
starting position if the sample was omitted is jas} — p},)ys. If p, < k. p;, will become
completely imaginary and the propagation of the disturkdandhe sample is a phase-less
damped exponential wave function. In the case considenexthey, < y and hence the
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LY 7, in far-zone

Figure D.2: Propagation of Green function from a souftef disturbance below the sample
surface to an observation point in the far-zone.

one-dimensional Green function becomes:

1 7 Y—1, 3 Ys—1
90y 1,92 = 5o ey (W=) gy (W =v0) g (3 — yyg), (D.14)
Yy
where
e~v¥ + p(py)er? y >0
U,(y) = y (D.15)
T(py)e™ "PvY y <0

and it was used that(p,)/p), = 7(p,)/py. Assuminge’s(¥==v)W, (y, — yq) is constant
or a slowly varying function op, the Green function for large distances { ;| >> \)
becomes [66]:

GEOF,7%) = Go(7 = 7)™ =0y (y, — o), (D.16)

where nowy' = k(7—7)/ |7 — 75| If ys < yo the condition for a constant or slowly varying
value ofe'v (¥« =v0) W (y, — 1), comes down td(p, — p},)(ys — yo)| < 1, so that either
the sample surface structure should not be too pidhs — yo) < 1 or p,(ys — yo) > k2.
These conditions start to overlap wheriys — yo) ~ 1, hence as long as.(ys — yo) < 1
these conditions are fulfilled for all,. This condition will certainly not hold for the non-
diffuse component of the scattering as then the integral@ve y, extends from-oo to 0.
The same result under the same conditions can be derivedrgythe method otationary
phase for double integralss discussed by Mandel [1].

D.2 Wavevector distribution of scattered mutual coherence
function

The scattered-wave function given by equation (D.1) dué¢aundisturbed potential (*)
becomes:

Wi (k,7) = / vo(ky)p(ky)et Tem v dEy, (D.17)

where in the far-zone the interference between the incideam and the scattered beam is
ignored. Using the wavevector representation of the Graantion derived in the previ-
ous section and equation (6.74) for the incident-wave fancthe scattered-wave function
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given by equation (D.1) due to the disturbed poteritid) becomes

wgp(]gﬂ?) — //wo k.H 7(kH PH)Tg 7[)7‘\1/ (ye)\II ( )V(l)(f* )d Ty d s

171247T2
(D.18)
and integrated over all possible contributions:
. —twit
(1) — MX D.19
PR = (D.19)

///wo(En)eiﬁﬂi@rﬁn)ﬂ7\1/1’@5;@’“@5)V“)(Fs)di”rsd%ud%u-
y

If it is assumed thatlose to the sample surfabeth the incident mutual coherence function
and the scattered one are homogeneous, the wavevectdndistt of the scattered mutual
coherence function is defined by:

Wsc(ﬁevﬁ]\) = /e_iﬁ” i Fsc(ftsa Ts + ’F‘H,O)dZ’I"H (Dzo)

Using the definition of the mutual coherence function andaéiqu (C.7) and inserting the
above equation results in:

WSC(FS»ﬁH) = W(O O)( \ ) W(l O)( \ ) W(O 1)(7“5,;0“) W(l 1)(T57PH) (D.21)
where
a, a,b 7
W( b)( Ts, P \ A /VVm Ts, S( )( ,k‘)dzk‘u, (D.22)
where thesample surface structure factoase defined as:
SV (5. k) = / e ATIGED (5. K, ) dPr (D.23)
Where@” = pj — EH equals the wavevector transfer parallel to the sample cirfahe
sample correlation functiorare defined as:

R(ky)pyAs

GO0 (5 k7)) = P (D.24)
i

. 2 2
Gglvf”(mm:(m) voT(pp”) [0t wt) VO, ©29

27'('?7,2 2 y
GOV (B, k,7) = GO(p, k, 7)) (D.26)
and ,
GOV (G k7)) = <l> x D.27
SUEk ) = { (D.27)

/ / V() Wi () U (s + 9) V(g + ) VO E) VO (7 + 7)drady,
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D.3 Mutual coherence function at detector position

Using equations (C.17) and (D.22) the mutual coherencetiimat the detector position
becomes:

L0 = [ o [ Wl R)si@ Rhar. (©28)
ds

This formula is derived under the condition of homogeneauaglent and scattered mutual
coherence function at the sample position. The homogenesasnust extend over the
sample correlation length determined®y.



Summary

This book starts with an introduction to coherence theorg@glied to neutron scatter-
ing. Further, it discusses application of this theory to samutron scattering techniques.
Especially it describes the application to small angle reguscattering and neutron reflec-
tometry. An extension is given of coherence theory for rendrto incorporate neutron

polarization effects. This extension is used to descrilgroa spin echo coding techniques
which are the basis for the mentioned applications.
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