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Preface

This book has been born from the research of the author into the possible experi-
mental difference between the Lorentz ether theory and Einstein’s special relativity
theory. Lorentz himself regards both theories as giving the same results for the de-
scription of moving electro-magnetic systems or even more general for all systems.

There seem to be no established experiments in contradiction of special relativity
theory, although quite a few authors report on such experiments, which as far as
the author knows have never been accepted by main stream physics, nor have these
experiments have had any influence on our daily lives.

The discovery of Wigner rotation inherent after two non-co-linear Lorentz trans-
formations resulting in Thomas precession should have triggered a renewed interest
in the search for possible differences, including the performance of accurate ex-
periments. Unfortunately to the best of the author knowledge no such interest has
emerged.

The aim of this book is therefore to arouse this interest and to give a theoretical
background for the comparison of both theories.
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Chapter 1

Introduction

Since at the end of the 19th century methods became accurate enough to measure
the speed of light, experiments were devised to measure the anisotropy of the speed
of light at the Earth surface. This was sought to be done by so-called first order
experiments, where the effect depends in first order on the ratio v/c , where v is
the velocity of the observer with respect to a preferred rest frame and c is the speed
of light in this frame. When Fresnel [1] introduced his famous Fresnel drag coef-
ficient it was believed that all possible first order effects were compensated by an
ether drag. Then Maxwell [2] came along with the notion of second order experi-
ments, where the effect depends in second order on the same ratio. Although at the
time Maxwell thought it beyond any means of experimental methods to measure a
second order effect one year later in 1881 Michelson [3] devised an apparatus that
should be able to measure the change of the velocity of the observer very accurately.
The apparatus is now known as a Michelson-Morley interferometer. After some
comments on the experiment by Lorentz in 1886 [4] Michelson and Morley [5, 6]
increased the sensitivity of the apparatus with almost a factor of ten overcoming
the accuracy objections of Lorentz. The accuracy of the apparatus was further in-
creased with a factor of 6 by Morley and Miller [7],[8] and by Miller in a series
of experiments between 1905 and 1930 [9, 10, 11, 12]. In all these experiments
the expected magnitude of the effect was never observed. This is explained by the
Lorentz contraction [13, 14] or by Einstein’s special relativity theory [15].

However, Miller in his elaborate series of experiments, always claimed that he
measured a small second order effect and also a first order effect. The second order
effects were quite small with respect to the expected magnitude for the effect, but
larger than the experimental error. He analyzed these second order effects by com-
bining measurements at different epochs. Assuming the Sun moves relative to the
preferred rest frame he was able to find a preferred direction in space and a velocity.
The first order effect depended very much on the detailed experimental settings and
were not analyzed to find an anisotropy.

1



2 Chapter 1. Introduction

In February 1927 a conference on the experiment and theoretical background
was held at the Mount Wilson Observatory [16]. This conference did not succeed in
finding a flaw in either experiment or theory, leaving the discrepancy intact. In view
of this discrepancy some researchers tried to find experimental evidence of first or
second order effects in Michelson-Morley interferometer type instruments. This has
been done by, for instance, Piccard [17, 18, 19], Illingworth [20] and Joos [21]. All
these authors report the absence of the expected magnitude of the effect.

In 1955 Shankland, a former pupil of Miller, re-analyzed Miller’s data [22] and
concluded that the second order effects do exist and remarks that they remain es-
sential constant in phase and amplitude through periods of several hours and are
then associated with a constant temperature pattern in the observation hut. Assum-
ing that during several hours the second order effect should change considerably, he
then concludes that there is no second order effect and contributes any other changes
to temperature effects. However, it was already shown by Miller [12] that during
several hours changes could be very small depending on the sidereal time and the
epoch. Hence, the conclusion of Shankland is unsupported and the discrepancy
between Miller’s results and theoretical expectations remains.

In the following chapters a method is developed that can be used to find possi-
ble deviations from the expectations of special relativity theory and Lorentz ether
theory. In literature it is often stated that Lorentz ether theory and special relativity
give the same experimental results. Here it is shown that although in many cases
this is true, it does not hold in general and hence an experiment can be devised to
enable the choice between the one or the other.



Chapter 2

Waves in ether

2.1 Huygens principle

Many ether theories (the simple and more complicated ones) yield wave equations
like

∂2u

∂t2
− c2∇2u = S(r⃗, t) (2.1)

where t represents time flow, r⃗ is the location vector, u is either a scalar or a vector
representing the essence of the wave (for instance a location of a particle with re-
spect to its rest position, or the electric or magnetic field according to the Maxwell
equations). c is a constant with the dimensions of a velocity and can be identified as
the wave velocity. The function S corresponds to the source term.

If S = 0 the solution of the wave equations can be described by means of plane
waves

u(r⃗, t) = û cos
(
ωt− r⃗ · k⃗ + ϕ

)
where û is called the amplitude of the wave, ω is called the frequency, k⃗ is called
the wave vector and ϕ is the phase of the wave for t = 0 and r⃗ = 0. This function is
periodic in time with a period, T = 2π/ω and periodic in space with a wavelength,
λ = 2π/k. Inserting this solution of the wave equation in equation (2.1) yields

ω = kc or λ = cT

which is known as the dispersion relation for ether waves.
Waves can only be created by a source term different from 0. If this source term

S(r⃗, t) can be approximated by a Dirac delta function Ŝδ(r⃗, t) the solution of the
wave equation is given by the Green function

u(r⃗, t) = Ŝ
δ
(
t− r

c

)
4πr

(2.2)

3



4 Chapter 2. Waves in ether

Source 1 Source 2
Period T1 = 1/c T2 = 1/c

Velocity β⃗1 = (0.5 0 0)T β⃗2 = (0 0.5 0)T

Position R⃗1 = (0 4 0)T R⃗2 = (0 − 4 0)T

Start time t1 = 0 t2 = 0

Table 2.1: Parameters of the two sources used in the examples.

which corresponds to a spherical wavefront expanding from its origin with the wave
velocity. This is the basis for the Huygens principle put forward in his Traité de la
lumière of 1690 [23].

2.2 Moving sources

Following Huygens principle, suppose that a wavefront is created in an Euclidean
space R3 at regular time intervals Tk, by point source k moving through the ether
with velocity cβ⃗k, where c is the wave velocity in the ether. Here, point source
means that the size of the source is much smaller than the emitted wavelength, λk,
related with the time intervals Tk by the dispersion relation of the ether λk = cTk.
The first wavefront starts at tk (ether time reference), the second at tk + Tk and
in general the (i + 1)th wavefront at tk + iTk. When R⃗k is the position (ether
coordinate system) of the source when the first wavefront is emitted, the position of
the wavefront at a certain time t is given by

t < tk + iTk : r⃗i = R⃗k + c(t− tk)β⃗k
t ≥ tk + iTk : r⃗i = R⃗k + icTkβ⃗k + c(t− tk − iTk)ζ⃗(ϕ, θ)

(2.3)

where i ∈ N and

ζ⃗(ϕ, θ) =

 cosϕ sin θ
sinϕ sin θ

cos θ

 ,
is a unit vector in an arbitrary direction. ϕ can vary between 0 and 2π, θ between
0 and π. The first line corresponds to the location of the source itself. There is
no emitted wavefront, it is assumed to exist latent inside the source. Only after the
creation at time tk+iTk, a real wavefront is present at locations given by the second
line. Hence, this position corresponds to the location where the Green function
given in equation (2.2) is non-zero.

As an example for two sources 1 and 2 with parameters as given in table 2.1 the
wavefronts at different times are shown in figure 2.1. From left to right the time
increases with steps of the period of source 1, starting from the pulse start time of
source 1. Observe that the first point of contact of the wavefronts of source 1 and 2
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Figure 2.1: Position of wavefronts of sources 1 (red) and 2 (blue) for z = 0 with
parameters shown in table 2.1 in the ether.

is at t = 4Tk at the origin. As source 1 moves to the right, the center of the smaller
circles representing ever younger wavefronts are shifted ever further to the right.
The same occurs for source 2 albeit in a different direction according to the velocity
of source 2.

2.3 Doppler effect

One can see in figure 2.1 that in the direction of motion the wavefronts are closer
together than in the opposite direction. This is the well-known Doppler effect. The
time difference between the sequential arrival of wavefronts emitted by the source
at the observer location in the origin is defined by To = t(r⃗i+1 = 0)− t(r⃗i = 0). It
is a measure for the Doppler effect. By eliminating ζ(ϕ, θ) from equation (2.3) one
finds

t(r⃗i = 0)− tk = iTk + aiTk

where a⃗iλk = R⃗k + iβ⃗kλk equals the location of the source when the detected
wavefront was emitted. The propagation direction of the wavefronts at the observers
location, κ⃗i is the direction in which the location of a wavefront r⃗i changes when
the time is increased by dt, hence by definition

κ⃗i =
v⃗i
vi

(2.4)
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where v⃗i is the velocity of the wavefront, given by

v⃗i =
dr⃗i
dt

= cζ⃗(ϕ, θ) = −ca⃗i/ai

so that κ⃗i = −a⃗i/ai. Now,

To
Tk

= 1 + |⃗ai + β⃗k| − |⃗ai|

To obviously depends on Tk and β⃗k, but in general also depends on R⃗k and i. If the
origin of the emitted wavefronts is far away from the observer so that ai >> 1, then
the wavefronts can locally be approximated by planes moving in direction κ⃗i. The
above equation reduces to

To
Tk

= 1− κ⃗i · β⃗k +
1

2ai

(
β2k − (κ⃗i · β⃗k)2

)
+O2(1/ai) (2.5)

where the first two terms correspond to the Doppler effect for plane waves emitted
by a moving source in a medium with a limited wave velocity. The third term is due
to the curvature of the wavefront and is in normal situations negligible.



Chapter 3

Infinite signal speed

3.1 Galilean transformation

When an observer, being at ether time to at a location R⃗o in the ether coordinate
system, is moving with respect to the ether with a velocity β⃗o, then the wavefronts
have a location with respect to the observer given by the Galilean transformation

r⃗g = r⃗ − R⃗o − c(t− to)β⃗o (3.1)

and the observers reference time is

tg = t− to (3.2)

Hence, when the observer moves along with the first point source and he would be
able to instantly observe the ether disturbances, he would observe the position of
the wavefronts of a source k according to

tg < tgk + iT g
k : r⃗gi = R⃗g

k + c(tg − tgk)β⃗
g
k

tg ≥ tgk + iT g
k : r⃗g1 = R⃗g

k + icT g
k β⃗

g
k + c(tg − tgk − iT g

k )(ζ⃗(ϕ, θ)− β⃗o)
(3.3)

where the velocity of the source with respect to the observer

β⃗gk = β⃗k − β⃗o

is the Galilean velocity composition law and R⃗g
k = R⃗k − R⃗o − c(tk − to)β⃗o, tgk =

tk − to are the Galilean transformations of the source point location and time when
the source emits its first wavefront. Here it is assumed that the period of the source
does not depend on its velocity with respect to the ether, T g

k = Tk .

7
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Figure 3.1: Position of wavefronts of sources 1 (red) and 2 (blue) for z = 0 with
parameters shown in table 2.1 as would be observed by an observer moving along
with source 1 when he would be able to instantly observe the ether disturbances.

3.2 Co-moving observer

Now let us return to figure 2.1. For the observer co-moving with source 1 β⃗g1 = 0,
and hence the wavefronts are always emitted from the same point with respect to the
observer. After that, the wavefronts seem to ’drift away’ to a direction opposite to
the observers velocity direction. This is shown in figure 3.1 for the example system.
The first point of contact is for tg = 4T1 the same as before, but the location is
shifted to the right due to the motion of the observer with respect to the ether. Again
as both sources are moving in the ether the wavefronts in the direction of motion are
closer together than in the opposite direction.

3.3 Doppler effect

The Doppler effect for these sources can be defined is a similar way as before:
T g
o = tg(r⃗gi+1 = 0) − tg(r⃗gi = 0). By eliminating ζ(ϕ, θ) from the above equation

one finds

tg(r⃗gi = 0)− tgk − iT g
k = |(tg(r⃗gi = 0)− tgk − iT g

k )β⃗o − R⃗g
k/c− iT g

k β⃗
g
k |
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or

tg(r⃗gi = 0) = tgk + iT g
k + γoT

g
k

(√(
γoβ⃗o · a⃗gi

)2
+ (agi )

2 − γoβ⃗o · a⃗gi

)

where γo = 1/
√
1− β2o and a⃗gi λ

g
k = R⃗g

k + iβ⃗gkλ
g
k equals the location of the source

with respect to the observer at the moment that the detected wavefront was emitted.
The propagation direction of the wavefronts at the observers location, κ⃗gi is defined
by equation (2.4). For the observer the velocity of the wavefront is given by

v⃗gi =
dr⃗gi
dtg

= c(ζ⃗(ϕ, θ)− β⃗o) = −c a⃗gi

γo

(√(
γoβ⃗o · a⃗gi

)2
+ (agi )

2 − γoβ⃗o · a⃗gi

)

so that κ⃗gi = −a⃗gi /a
g
i . Now,

T g
o

T g
k

= 1−γ2o β⃗o · β⃗
g
k+γo

(√(
γoβ⃗o · a⃗gi+1

)2
+ (agi+1)

2 −
√(

γoβ⃗o · a⃗gi
)2

+ (agi )
2

)

which of coarse depends on T g
k and β⃗o and β⃗gk , but in general also depends on R⃗g

k

and i. If the origin of the emitted wavefronts is far away from the observer so that
agi >> 1, then the wavefronts can locally be approximated by planes propagating
in direction κ⃗gi . Up to first order in 1/agi the above equation reduces to

T g
o

T g
k

=
1− ζ⃗ · (β⃗gk + β⃗o)

1− ζ⃗ · β⃗o
=

1− ζ⃗ · β⃗k
1− ζ⃗ · β⃗o

(3.4)

where
ζ⃗ = β⃗o + κ⃗gi

(√
1− β2o + (β⃗o · κ⃗gi )2 − β⃗o · κ⃗gi

)
is a unit vector indicating the propagation direction of the wave at the observer
position as determined by an observer at rest with respect to the ether as it is defined
by

ζ⃗ − β⃗o

|ζ⃗ − β⃗o|
= κ⃗gi

3.4 Aberration

Equation (3.4) gives the Doppler effect for waves emitted by a moving source and
detected by an observer moving in a medium with a limited wave velocity. It is usual
assumed to be the classical Doppler effect for wave propagating through a medium
like air or ether. However, from the above it is clear that the propagation direction
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Figure 3.2: Absolute (Left) and relative (Right) rays due to motion of their source
in the ether. The angle of aberration, α is the angle between the normal on the
wavefronts and their propagation direction.

of the wave as observed by the moving observer is not ζ⃗, but κ⃗gi . This difference
was well known in the past as the difference between absolute and relative rays
(see figure 3.2). For absolute rays the wavefront is perpendicular to the propagation
direction. For relative rays the difference between these two directions is what is
known as aberration. The angle of aberration can be found by

α = acos(ζ⃗ · κ⃗gi ) = asin (βo sinαk)

where αk = ̸ (β⃗o, κ⃗
g
i ), equals the angle between the observers velocity and the

propagation direction of the wavefront.

3.5 Transverse Doppler effect

When the source is rotated around the observer, obviously both ζ⃗ and κ⃗gi make a
complete revolution. Hence, the minimum and maximum of the Doppler effect is
not affected but the shape of the curve as function of the position of the source with
respect to the observer can be quite different for source velocities close to the wave
velocity. In figure 3.3 an example is shown of the relative frequency change as
determined by an observer moving with respect to a source stationary in the ether as
function of the angle between κ⃗gi and β⃗o (left) or ζ⃗ and β⃗o (right) for βo = 0.1, 0.5
and 0.9. The functions in the right graph are just cosine functions of the angle. The
amplitude is determined by βo. The functions in the left graph are almost the same
when βo is small. For larger velocities the functions change shape, for γo >> 1
changing to

cos ̸ (κ⃗gi , β⃗o) ≥ 0 : ∆f
f = −1 + γ−2

o /2 +O4(1/γo)

cos ̸ (κ⃗gi , β⃗o) < 0 : ∆f
f = −1 + 2 cos2 ̸ (κ⃗gi , β⃗o) +O2(1/γo)

where the frequency for an observer moving away from the source becomes very
small: the waves take much longer time to pass the observer.

When β⃗o ⊥ κ⃗gi then

T g
o

T g
k

= 1− γoβ⃗
g
k ·
(
γoβ⃗o + κ⃗gi

)
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If the source is stationary with respect to the ether this reduces further to

T g
o

T g
k

= γ2o

a transverse Doppler effect. However, if in such a case there is a small angle be-
tween β⃗o and κ⃗gi so that their inner product is −β2o/

√
1 + β2o the transverse effect is

completely vanished making the detection virtually impossible.
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Chapter 4

Finite signal speed

When the observer has to use the ether waves themselves to determine the position
of the ether disturbances, he has to take into account his own velocity with respect to
the ether to determine the actual position of the wavefronts in the ether at a certain
ether time. However, if he assumes he is stationary with respect to the ether (or
equivalent that light travels in all directions with a constant velocity c), then he
assumes that the wavefronts of a source (stationary and coinciding with respect to
the observer) propagate with uniform velocity away from him. This constitutes
his coordinate system. Note that this is only an imaginary system based on the
assumption that his own velocity with respect to the ether is 0.

4.1 Observer time unit

According to the International System of Units [24] the second is

the duration of 9 192 631 770 periods, TCs of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the Cesium 133
atom.

A calibration of the observer time unit entails the observation of this period of
radiation. What is not defined in this system of units is the velocity of the Cesium
atom with respect to the ether, cβ⃗o. However, when ether would exists it is possible
that this velocity might influence the period of the radiation [25], [26],[27],[28],[29].
Without detailed knowledge of the interaction between ether and the Cesium atom, it
is impossible to assume that the period will be independent of the velocity. However,
when the ether is homogeneous and isotropic, only the magnitude of the velocity can
be of influence. Therefor it is assumed that the period of the Cesium atom varies

13



14 Chapter 4. Finite signal speed

with its velocity with respect to the ether according to the following relation

TCs(βo) =
TCs(0)

τo(βo)
(4.1)

Under this assumption the (in-)famous clock paradox introduced by Langevin in
1911 [30] and extensively discussed by for instance Dingle [31] does not occur, as
there is no symmetry. The effect is due to the velocity with respect to the ether, not
due to the velocity with respect to the observer.

4.2 Observer distance measurement

According to the same International System of Units [32] the meter is

the length of the path traveled by light in vacuum during a time interval of 1/299
792 458 of a second

It follows that the speed of light in vacuum is exactly 299 792 458 meters per sec-
ond, c = 299 792 458 m/s. Hence, when an observer wants to determine a distance,
he measures the time, ∆to of a forth and back trip by means of his Cesium atom
clock and calculates the distance as c∆to, so that automatically the speed of light is
constant.

Let us take two observers and two equivalent sources, stationary with respect to
each other, but moving with a velocity cβ⃗o with respect to the ether. Observer 1 and
source 1 are located at R⃗1 in the ether at time, t = t1 source 1 starts pulsing with a
period of T . According to equation (2.3) the wavefronts emitted by source 1 are at
location

t < t1 + iT : r⃗1 = R⃗1 + c(t− t1)β⃗o
t ≥ t1 + iT : r⃗1 = R⃗1 + icT β⃗o + c(t− t1 − iT )ζ⃗(ϕ, θ)

(4.2)

Observer 1 and 2 have agreed that observer 1 would start source 1 first and when the
first ether disturbance of source 1 would reach observer 2, observer 2 would start
source 2. Hence, the wavefronts emitted by source 2 are at location

t < t2 + iT : r⃗2 = R⃗2 + c(t− t1)β⃗o
t ≥ t2 + iT : r⃗2 = R⃗2 + c(t2 − t1 + iT )β⃗o + c(t− t2 − iT )ζ⃗(ϕ, θ)

(4.3)

where R⃗2 is the location of source 2 at t = t1 and t2 is the ether time when source
2 starts pulsing. Hence,

R⃗2 − R⃗1 = c(t2 − t1)(ζ⃗(ϕ, θ)− β⃗o)
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Eliminating ζ⃗(ϕ, θ) gives

c(t2 − t1) = γ2o β⃗o · (R⃗2 − R⃗1) + γo

√
(γoβ⃗o · (R⃗2 − R⃗1))2 + |R⃗2 − R⃗1|2 (4.4)

where again γo = 1/
√
1− β2o . The wavefront emitted by source 2 reaches observer

1 again at an ether time t = t1 + τ121 so that

R⃗2 − R⃗1 = c(t2 − t1 − τ121)(ζ⃗(ϕ, θ)− β⃗o)

Again eliminating ζ⃗(ϕ, θ) gives

c(t2 − t1 − τ121) = γ2o β⃗o · (R⃗2 − R⃗1)− γo

√
(γoβ⃗o · (R⃗2 − R⃗1))2 + |R⃗2 − R⃗1|2

so that
τ121
2

=
γo
c

√
(γoβ⃗o · (R⃗2 − R⃗1))2 + |R⃗2 − R⃗1|2 (4.5)

This is also the time difference if observer 2 would start pulsing and observer 1
would react, so that τ212 = τ121. Of coarse this can be generalized by a multitude
of observer and source pairs by using the appropriate values for R⃗1 and R⃗2.

4.3 Observer coordinate system

To define an Cartesian coordinate system in 3-dimensional Euclidean space, mea-
surements of 6 distances between 4 points are needed. For instance the length of the
edges of a regular tetrahedron of which all four faces are equilateral triangles. Then
all distances between the points are equal. It is also possible to use four points of
a corner of a cube. Then there are 3 distances with the length of an edge length a
and 3 distances with a length of a

√
2. The advantage is that the vectors along these

edges are perpendicular to each other, constituting a Cartesian coordinate system
(see figure 4.1).

Let 4 of the above mentioned observer and source pairs arrange themselves with
respect to each other so that the distances between them are constant and correspond
to figure (4.1) and table 4.1. Note that R⃗mn = R⃗m − R⃗n. Actually the observers do
not measure the distance but the time ∆to it takes for an ether disturbance to move
forth and back between the points (see chapter 4.2). They measure a time difference
according to their Cesium atom clock ∆to and assume that the ether disturbances
propagate with the speed of light, so that a = c∆toτo, where τo is the time ratio
defined by equation (4.1).

The observers have agreed that the direction between observers 1 and 2 should be
their x-axis represented in the ether coordinates by u⃗x, and so on. Hence, according
to the co-moving observers, a point represented by coordinates (xo, yo, zo) is at a
location represented by vector xou⃗x + you⃗y + zou⃗z , where they assume that u⃗x, u⃗y
and u⃗z are unit vectors which constitute a Cartesian coordinate system.
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Figure 4.1: Four points of a corner of a cube with 3 distances with the length of
an edge length a (full lines) and 3 distances with a length of a

√
2 (dashed lines).

The vectors along the edges are perpendicular to each other, constituting a Cartesian
coordinate system.

In reality and in general these vectors are neither of unit length neither are they
perpendicular to each other. However, by measuring distances these observers have
no way of knowing their wrong assumptions.

In ether coordinates the same point is represented by

R⃗ = r⃗ − ctβ⃗o (4.6)

where R⃗ = (x y z)T is used as a reference to the point moving through the ether
according to r⃗ = R⃗+ ctβ⃗o.

To find a linear mapping between (xo, yo, zo) and (x, y, z) a scaling law is as-
sumed due to the properties of homogeneity that we attribute to space and time as
Einstein put it [15]. There is just one fixed direction β⃗o, so that a different scaling
in the direction parallel and perpendicular to β⃗o is used. Then

R⃗o⊥ = ξR⃗⊥ and R⃗o∥ = ψR⃗∥
((Ro)2 − ξ2R2)β2o = (ψ2 − ξ2)(β⃗o · R⃗)2

(β⃗o · R⃗o) = ψ(β⃗o · R⃗)
(4.7)

where R⃗o = (xo yo zo)T, R⃗∥ = (β⃗o · R⃗)β⃗o/β2o and R⃗⊥ = R⃗− R⃗∥. ψ and ξ can be
found by inserting this equation in the relations shown in table 4.1 and remembering
that R⃗21 corresponds to R⃗o = (c∆to 0 0)T (and similar relations for R⃗31 and R⃗41),
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First Second Direction Time measured = Ether time

1 2 u⃗x ∆toτo = γo
c

√
(γoβ⃗o · R⃗21)2 +R2

21

1 3 u⃗y ∆toτo = γo
c

√
(γoβ⃗o · R⃗31)2 +R2

31

1 4 u⃗z ∆toτo = γo
c

√
(γoβ⃗o · R⃗41)2 +R2

41

2 3 u⃗x − u⃗y ∆toτo
√
2 = γo

c

√
(γoβ⃗o · R⃗32)2 +R2

32

2 4 u⃗z − u⃗x ∆toτo
√
2 = γo

c

√
(γoβ⃗o · R⃗42)2 +R2

42

3 4 u⃗y − u⃗z ∆toτo
√
2 = γo

c

√
(γoβ⃗o · R⃗43)2 +R2

43

Table 4.1: Time difference measured between 4 observer and source pairs to consti-
tute a Cartesian coordinate system as the corner points of a cube shown in figure 4.1.

yielding

((c∆to)2 − ξ2R2
12)β

2
o = (ψ2 − ξ2)(β⃗o · R⃗21)

2

or

(γ2o − (ξτ)2)β2oR
2
12 = ((ψτo)

2 − (ξτo)
2 − γ4oβ

2
o)(β⃗o · R⃗21)

2

(4.8)

which is satisfied if and only if

ξ = γo/τo and ψ = γ2o/τo

so that
R⃗o = γo

τo

(
R⃗⊥ + γoR⃗∥

)
= γo

τo

(
R⃗+ (γo − 1)R⃗∥

)
= γo

τo

(
R⃗+ γ2

o
1+γo

(β⃗o · R⃗)β⃗o
)

(β⃗o · R⃗o) = γo
τo
γo(β⃗o · R⃗)

Ro = γo
τo

√
R2 + γ2o(β⃗o · R⃗)2

(4.9)

or inverse
R⃗ = τo

γo

(
R⃗o⊥ + 1

γo
R⃗o∥

)
= τo

γo

(
R⃗o + 1−γo

γo
R⃗o∥

)
= τo

γo

(
R⃗o − γo

1+γo
(β⃗o · R⃗o)β⃗o

)
(β⃗o · R⃗) = τo

γ2
o
(β⃗o · R⃗o)

R = τo
γo

√
(Ro)2 − (β⃗o · R⃗o)2

(4.10)

In the case of sound waves the clock rate is not affected, so that τo = 1 and
these equation are comparable to the Prandtl-Glauert transformations used in aero-
dynamic calculations in a uniform moving air flow [33],[34].
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The 6 equations of table 4.1 can be rearranged to express the following relations
between u⃗x, u⃗y, u⃗z and β⃗o

|u⃗x|2 = τ2o (1− β2o)− γ2o(β⃗o · u⃗x)2

|u⃗y|2 = τ2o (1− β2o)− γ2o(β⃗o · u⃗y)2

|u⃗z|2 = τ2o (1− β2o)− γ2o(β⃗o · u⃗z)2

u⃗x · u⃗y + γ2o(β⃗o · u⃗x)(β⃗o · u⃗y) = 0

u⃗y · u⃗z + γ2o(β⃗o · u⃗y)(β⃗o · u⃗z) = 0

u⃗z · u⃗x + γ2o(β⃗o · u⃗z)(β⃗o · u⃗x) = 0

(4.11)

It can be checked that all relations of equation (4.11) are satisfied by transforma-
tion (4.9). These equations can be used to determine the distance measured between
an observer and source pair at xo1u⃗x + yo1u⃗y + zo1u⃗z and one at xo2u⃗x + yo2u⃗y + zo2u⃗z
as given by equation (4.5)

|(xo1 − xo2)u⃗x + (yo1 − yo2)u⃗y + (zo1 − zo2)u⃗z| = (4.12)√
(xo1 − xo2)

2 + (yo1 − yo2)
2 + (zo1 − zo2)

2

which is the correct value for the norm in a Euclidean space represented by a Carte-
sian coordinate system.

4.4 Clock synchronization

When an observer B wants to synchronize his clock with another observer A, the
distance measurement as described in chapter 4.2 is used to calculate the time that
the first pulse was emitted. The observers assume that both time intervals for trav-
eling forth and back are equal and half the measured time. Hence, the observer B
thinks that the time that the first pulse of source A was emitted as determined by the
observer B is

t′B = tA + γ2o
β⃗o · (R⃗B − R⃗A)

c
(4.13)

which differs from tA
To generalize this, the time delay with respect to R⃗A = 0 (i.e. the location of the

ether origin at t = 0) can be included into the time coordinate of any co-moving
observer, so that

t′ = t− γ2o
β⃗o · R⃗
c

using equation (4.6)

t′ = γ2o

(
t− β⃗o · r⃗

c

)
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Figure 4.2: Location of source, wavefronts and observers A and B for wavelength
measurement. Left: In observer coordinates, Middle: In ether coordinates at the
moment the first wavefront reaches observer B. Right: In ether coordinates at the
moment the second wavefront reaches observer A. The blue line goes trough the
position of the observers and the source.

The observed time is measured by the clock of the observer, for which holds dto =
dt′/τo, so that the observed time becomes

to =
γ2o
τo

(
t− β⃗o · r⃗

c

)
(4.14)

This can be denoted as the local time as was done for instance by Lorentz [35]. His
initial interpretation of this time was that it could be used as an auxiliary variable
reducing the complexity of the equations. After 1905 he realized that this local time
is indistinguishable from the time as measured by the observer. Here, it is stressed
that the local time is due to the change of clock rate (according to equation (4.1) and
the way the clocks are synchronized using ether disturbance propagation under the
a-priory assumption that the observer is stationary with respect to the ether.

4.5 Wavelength measurement

Two observersA andB agree to measure the distance between two sequential wave-
fronts emitted by a source at the origin of the observer’s coordinate system. This
corresponds to the wavelength of the waves emitted by the source. Hence, they
position themselves in line with the source in such a way that they observe simul-
taneously the passing of the wavefronts emitted by the source (see figure 4.2). The
first observer is at location r⃗oA or in ether coordinates ctβ⃗o + r⃗A, where r⃗A is cal-
culated according to equation (4.10). The second observer is at location (1 + α)r⃗oA
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or in ether coordinates, ctβ⃗o + (1 + α)r⃗A. The observers will measure a distance
of αroA, while an observer at rest with respect to the ether will measure a distance
of αrA. What observers A and B interpret as simultaneous is not at the same time
in the ether coordinates as was shown in chapter 4.4. The ether time difference
between the second and first observer is given by equation (4.13)

tB − tA =
α

c
γ2o β⃗o · r⃗A

The time, tA is determined by the arrival time of the second wavefront emitted by the
source at the origin at the location of the first observer, so that using equation (4.4)

tA = T +
γo
c

(
γoβ⃗o · r⃗A +

√
(γoβ⃗o · r⃗A)2 + r2A

)
and the time, tB is determined by the arrival time of the first wavefront emitted by
the source at the location the second observer, so that again using equation (4.4)

tB =
γo(1 + α)

c

(
γoβ⃗o · r⃗A +

√
(γoβ⃗o · r⃗A)2 + r2A

)
so that

αγo

√
(γoβ⃗o · r⃗A)2 + r2A = cT

or using equation (4.15)

αroA =
cT

τo
= cT o

where T o = T/τo is the period of the source as measured by the observers. Hence,
the wavelength measurement is exactly the same as if the observers would have
been at rest with respect to the ether. This could have been expected as it is a direct
consequence of the definition of the observer coordinate system in section 4.3.

4.6 Lorentz transformation

Equation (4.14) and equation (4.6) inserted in equation (4.9) yield

R⃗o = γo
τo

(
r⃗ + γo

(
γo

1+γo
(β⃗o · r⃗)− ct

)
β⃗o
)

to = γ2
o
τo

(
t− β⃗o·r⃗

c

) (4.15)

or inverse
r⃗ = τo

γo

(
R⃗o + γo

(
γo

1+γo
(β⃗o · R⃗o) + cto

)
β⃗o
)

t = τo

(
to + β⃗o·R⃗o

c

) (4.16)
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These equations were already derived by Lorentz and Einstein. They both tried
to find the function τo. Lorentz found it by means of the Maxwell equations and the
electro-magnetic mass of an electron in his electron theory [35]. He found τo = γo.
Einstein derived the same function for it, by applying his primary assumption that
all physical laws should be independent of the inertial motion of the system [15].
This means that equations (4.15) and (4.16) should be exactly the same, yielding
directly τo = γo. Poincaré used a mathematical argument from group theory for
this assumption [36]. He found that under this condition co-linear transformations
formed a group.

Here, it is assumed that τo is unknown and it will be remembered that if τo = γo
the equations (4.15) are exactly the same as the Lorentz transformations, where the
location r⃗l with respect to the observer is given by

r⃗l = r⃗ − R⃗o + γo

(
γo

1 + γo
β⃗o · (r⃗ − R⃗o)− c(t− to)

)
β⃗o (4.17)

and the observers time reference would be

tl = γo(t− to)− γoβ⃗o · (r⃗ − R⃗o)/c (4.18)

4.7 Location of wavefronts of a moving source

To get a picture of the wavefronts emitted by a moving source in the coordinates
of the observer, the location of the wavefronts have to be calculated at a constant
observer time to. So first, the observer time is transformed to the ether time using
equation (4.16). So that in ether coordinates, the observer time corresponds to ether
time

t =
τo
γ2o
to +

β⃗o · r⃗
c

(4.19)

the same as equation (4.14). Then, the position of the wavefronts in the ether are
calculated by inserting it in (2.3). When

τo
γ2o
to +

β⃗o · r⃗i
c

< tk + iTk

then

r⃗i = R⃗k +

(
τo
γ2o
cto + β⃗o · r⃗i − ctk

)
)β⃗k

or otherwise

r⃗i = R⃗k + icTkβ⃗k +

(
τo
γ2o
cto + β⃗o · r⃗i − ctk − icTk

)
ζ⃗(ϕ, θ)
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Here it is assumed that the source period behaves like a Cesium atom clock (see
chapter 4.1) so that Tk is the period of clock while moving through the ether with
velocity βk. By eliminating β⃗o · r⃗i this can be rewritten. When

τo
γ2o
to < tk + iTk(1− β⃗o · β⃗k)− β⃗o · R⃗k/c

then

r⃗i = R⃗k +
β⃗o · R⃗k +

τo
γ2
o
cto − ctk

1− β⃗o · β⃗k
β⃗k

or otherwise

r⃗i = R⃗k + icTkβ⃗k +
β⃗o · (R⃗k + icTkβ⃗k) +

τo
γ2
o
cto − ctk − icTk

1− β⃗o · ζ⃗(ϕ, θ)
ζ⃗(ϕ, θ)

This has to be transformed to the observer reference coordinate system using the
transformation (4.15)

R⃗o
i =

γo
τo
r⃗i −

(
γ2o

τo(1 + γo)
β⃗o · r⃗i + cto

)
β⃗o

so that

to < tok + iT o
k : R⃗o

i = R⃗o
k + c(to − tok)β⃗

o
k

to ≥ tok + iT o
k : R⃗o

i = R⃗o
k + icT o

k β⃗
o
k + c(to − tok − iT o

k )η⃗(ϕ, θ)
(4.20)

where
R⃗o

k =
γo
τo

(
R⃗k + γo

(
γo

1 + γo
β⃗o · R⃗k − ctk

)
β⃗o

)
is the transformation according to equation (4.15) of R⃗k,

tok =
γ2o
τo

(
tk −

β⃗o · R⃗k

c

)

is the local time at the source origin according to equation (4.14) and

β⃗ok =
β⃗k/γo +

(
γo/(1 + γo)β⃗k · β⃗o − 1

)
β⃗o

1− β⃗k · β⃗o
(4.21)

is the velocity of the source in the observers coordinates, corresponding to the rela-
tivistic velocity addition law. Similar

η⃗(ϕ, θ) =
ζ⃗(ϕ, θ)/γo +

(
γo/(1 + γo)ζ⃗(ϕ, θ) · β⃗o − 1

)
β⃗o

1− ζ⃗(ϕ, θ) · β⃗o
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Figure 4.3: Position of wavefronts of sources 1 (red) and 2 (blue) for z = 0 with
parameters shown in table 2.1 as observed by an observer moving along with source
1 when he uses light to observe the ether disturbances and assumes he is stationary
with respect to the ether.

equal to equation (4.21) if ζ⃗ = β⃗k and βk = 1. Hence, it gives the direction of the
velocity of the ether disturbance as measured by the observer moving with a velocity
cβ⃗o with respect to the ether, when the ether disturbance moves in direction ζ⃗ in the
ether. Note that |η⃗| = 1, so that ether disturbances seem to move with velocity c
also when they are measured by observers moving with respect to the ether.
T o
k acts as the apparent period of the source and is equal to

T o
k = Tk

γ2o
τo

(
1− β⃗o · β⃗k

)
(4.22)

The results for source 1 and 2 are shown in figure 4.3. Comparison with figures 2.1
and 3.1 shows that the wavefronts appear to be at different locations. The first point
of interaction between the wavefronts of source 1 and 2 appears to be at a different
location and at a different time, although the physical situation is exactly the same as
before. This is similar to what occurs in figure 4.2. Although the observer measures
the wavefronts to be distributed like figure 4.3 the actual situation is depicted in
figure 2.1. This is due to dependence of local time on the position with respect to
the observer.
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Chapter 5

Kinematic effects

Equation (4.20) is completely equivalent to equation (2.3), so that for a source mov-
ing with respect to the ether the wavefronts appear to be completely spherical to
the (moving) observer, independent of the velocity of the source. This is due to
the special properties of the derived transformations. It is this property that inhibits
the detection of the velocity of the observer with respect to the ether by means of
standard interferometric experiments, as all wavefronts seem to move with a con-
stant velocity independent of the velocity of the observer with respect to the ether.
Further, it is shown below that many observable effects only depend on the velocity
of the source with respect to the observer as measured by the observer.

Up to now we have discussed what an observer measures when using the propa-
gation of ether disturbances to define his coordinate system. Some of these effects
are described above. As these effects do not influence the object under observation
but are due to the observers measurements only these can be referred to as kinematic
effects.

5.1 Doppler shift

Source 1 is moving with the same velocity through the ether as the observer (i.e.
β⃗1 = β⃗o) so that the wavefronts of source 1 are observed as simple spheres. This
is shown in figure 4.3. In such a case T o

1 = T1/τo = T exactly the period as
should be observed according to equation (4.1). Hence, the effect for source 1 is
gone due to the impossibility to measure the increased pulse time without knowing
ones velocity in the ether. A Doppler effect for a source moving with respect to
the observer remains. The apparent period is not only time dilated (indicated by
the factor γ2o/τo), but there is an additional change in period due to the absolute
motion of the observer and of the source in the ether (a relative change of β⃗k · β⃗o).
Note that this is not the classical Doppler effect measured as a change in the time
that wavefronts pass the observer as elucidated in chapter 3, but an actual change in

25
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the measured period time of the source, due to the assumed motionlessness of the
observer.

The above equation (4.22) can be rewritten

T o
k = Tk

γo
τo

γok
γk

= T
γo
τo

τk
γk
γok (5.1)

where τk = τ(βk), γk = 1/
√
1− β2k and γok = 1/

√
1− (βok)

2. In case of Lorentz
transformation (τ = γ) this reduces to the standard time dilatation T o

k = Tγok.
Hence, in such a case it is impossible to determine the observers velocity with re-
spect to the ether by measuring the change in period time from any other moving or
stationary point source.

There are several papers describing experiments of Doppler shift measurements.
Ives and Stilwell [37, 38] measured the Doppler shift of light emitted by fast-moving
hydrogen molecules. Later these results were confirmed by similar experiments by
Hasselkamp [39] in 1979. Similar Mössbauer rotor experiments done by Hay [40],
Champeney [41, 42], Kündig [43] are all in agreement with this relation. All these
measurements show that τ = γ, although only up to first order accuracy in γ. For the
rotation measurements one should be careful because a Doppler shift is not always
observed as was shown by Champeney [44] and Thim [45]. Further reanalysis of
Kündig’s experiment by Kholmetskii [46] and new experiments by his team indicate
that there might be a discrepancy between the expected shift and observed shift,
which can not be explained by this relationship.

5.2 Apparent Lorentz contraction

Let us assume an observerAmoves with velocity cβ⃗o through the ether, and two ob-
servers B and C moving with velocity cβ⃗k through the ether. Observer A measures
the velocity of B and C as cβ⃗ok given by equation (4.21)

β⃗ok =
γk
γok
β⃗k −

γo(γk + γok)

γok(1 + γo)
β⃗o

where is was used that
β⃗k · β⃗o = 1− γok

γkγo

From this one can derived the useful relations

β⃗k =
γok
γk
β⃗ok +

γo(γk + γok)

γk(1 + γo)
β⃗o

β⃗o · β⃗ok =
γk
γokγo

− 1
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β⃗ko =
γo
γko
β⃗o −

γk(γo + γko )

γko (1 + γk)
β⃗k

γko = γok

A complete list of such useful relation is given in appendix A.
Observers B and C are attached to both sides of a rod that has the direction

L⃗k = R⃗k
B − R⃗k

C as measured by the observers B and C at locations R⃗k
B and R⃗k

C .
The locations and times in the ether can be found by applying the inverse transfor-
mation (4.16)

r⃗ =
τk
γk

(
R⃗k + γk

(
γkβ⃗k · R⃗k

1 + γk
+ ctk

)
β⃗k

)

t = τk

(
tk +

β⃗k · R⃗k

c

)
And the locations and times as observed by observer A can be found by applying
transformation (4.15) yielding

R⃗o =
γo
τo

(
r⃗ + γo

(
γoβ⃗o · r⃗
1 + γo

− ct

)
β⃗o

)

to =
γ2o
τo

(
t− β⃗o · r⃗

c

)
so that

R⃗o = ctoβ⃗ok +
γoτk
τoγk

× (5.2)

{
R⃗k − γoβ⃗o · R⃗k

1 + γo
β⃗o + γo

(
β⃗o · R⃗k − γkβ⃗k · R⃗k

1 + γk

)(
β⃗ok + β⃗o

)}

to =
γoτk
τoγk

γok

(
tk − R⃗k · β⃗ko

c

)
The last term at the right hand sides shows that the observer A sees the rod moving
with a velocity β⃗ok with respect to him, just as it should. Observer A measures the
rod BC as

L⃗o = R⃗o
B − R⃗o

C =

γoτk
τoγk

{
L⃗k − γoβ⃗o · L⃗k

1 + γo
β⃗o + γo

(
β⃗o · L⃗k − γkβ⃗k · L⃗k

1 + γk

)(
β⃗ok + β⃗o

)}
from which it can be inferred that

L⃗o · β⃗o =
γoτk
τoγk

γk
γok

{
γok − γkγo
γo(1 + γk)

β⃗k · L⃗k + β⃗o · L⃗k

}
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L⃗o · β⃗ok =
γoτk
τoγk

γo
(γok)

2

{
γk(γ

o
k + γo)

γo(1 + γk)
β⃗k · L⃗k − β⃗o · L⃗k

}

L⃗k · β⃗ko = −τoγk
γoτk

γokL⃗
o · β⃗ok

so that
Lo =

γoτk
τoγk

Lk
√
1− (βko )

2 cos2 θk

or
Lo
√
1 + (γokβ

o
k)

2 cos2 θo =
γoτk
τoγk

Lk

where cos θk = L⃗k · β⃗ko/(Lkβko ) so that θk is the angle between the rods direction
and the velocity of observer A as measured by observers B and C and cos θo =
L⃗o · β⃗ok/(Loβok) so that θo is the angle between the rods direction and its velocity as
measured by observer A.

It is clear that observer A measures a rod that is shorter than the one measured
by the observers B and C co-moving with the rod. This is based on the calibration
of the equipment according to chapters 4.1 and 4.2, the rod has not changed its
dimensions at all. This is why it is called apparent Lorentz contraction.

Note that in case of the Lorentz transformation (τ = γ) these equations only
contain the angles measured in the coordinates of the observer and the magnitude
of their relative velocity (remember that βok = βko ). The relation between the angles
can be found by dividing the above equations, yielding

cos θo = − cos θk

γok

√
1− (βok)

2 cos2 θk

Hence, also be measuring the apparent Lorentz contraction or the angle between
the direction of the rod and its apparent velocity, it is impossible to determine the
velocity with respect to the ether. Obvious, here it does not matter whether or not the
rod is really contracted because one compares the length or direction of the rod as
measured by observersB andC with the measurements of the same rod by observer
A.

5.3 Wigner rotation

In case the observer A is moving with respect to the ether he will measure points B
and C moving independently from A as given by transformation (5.2). This trans-
formation looks quite complicated and hard to understand. However, Wigner [47]
was able to find a simple interpretation of this transformation and it is now known
as a boost defined by transformation (4.15), followed by a rotation around an axis
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at the observer’s location. This rotation is known as the Wigner rotation. By using
β⃗ok and β⃗ko equation (5.2) can be rewritten as

R⃗o = ctoβ⃗ok +
γoτk
τoγk

{
R⃗k − γokβ⃗

k
o · R⃗k

γok − 1
β⃗ok −

(β⃗ko − β⃗ok) · R⃗k

(1 + cosΩo
k)(β

o
k)

2
(β⃗ko − β⃗ok)

}
(5.3)

where Ωo
k is the angle between vectors β⃗ok and β⃗ko know as then Wigner rotation

angle given by

cosΩo
k = −

β⃗ok · β⃗ko
βkoβ

o
k

=
(1 + γok + γo + γk)

2

(1 + γok)(1 + γo)(1 + γk)
− 1 (5.4)

Using the results of appendix B this can be rewritten as

R⃗o =
γoτk
τoγk

ℜ
{
β⃗k × β⃗o

|β⃗k × β⃗o|
,Ωo

k, R⃗
k − γko β⃗

k
o · R⃗k

1 + γko
β⃗ko

}
+ ctoβ⃗ok (5.5)

to =
γoτk
τoγk

γok

(
tk − R⃗k · β⃗ko

c

)
where the function

ℜ(n⃗,Ω, R⃗) = R⃗+ n⃗× R⃗ sinΩ− (R⃗− n⃗(n⃗ · R⃗))(1− cosΩ)

is known as the Rodrigues vector rotation formula rotating the vector R⃗ around a
unit vector n⃗ over an angle Ω according to the right hand rule. Note that

n⃗ =
β⃗o × β⃗k

|β⃗o × β⃗k|
=

β⃗ok × β⃗ko

|β⃗ok × β⃗ko |

so that β⃗o, β⃗k, β⃗ok and β⃗ko all lie in the same plane and the above rotation has the
effect that the vector β⃗ko is rotated into the vector −β⃗ok, which has been discussed
by Ungar [48]. This has been depicted in figure 5.1. More useful notations of the
Rodrigues vector rotation formula are given in appendix B.

A boost with a velocity β⃗ko followed by a Wigner rotation over an angle Ωo
k around

an axis (β⃗ok × β⃗ko )/|β⃗ok × β⃗ko | at the location of the observer, gives

R⃗o =
γok
τ ok

ℜ
{
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |
,Ωo

k, R⃗
k + γko

(
γko β⃗

k
o · R⃗k

1 + γko
− ctk

)
β⃗ko

}

to =
γok
τ ok
γok

(
tk − β⃗ko · R⃗k

c

)
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η⃗

β⃗y

β⃗x

β⃗k

β⃗o

β⃗ok

−β⃗ok

β⃗ko

Figure 5.1: Direction of velocities in velocity space and the normal to the velocity
plane. β⃗o, β⃗k, β⃗ok and β⃗ko all lie in the same plane and the Wigner rotation has the
effect that the vector β⃗ko is rotated into the vector −β⃗ok. The circle denotes the length
of β⃗ok.

which is exactly the same as equation (5.5) under the condition τ = γ. This is the
reason why the apparent Lorentz contraction does not reveal the ether as discussed
in the previous chapter.

If the boost velocity β⃗ko is small, then γok ≈ 1 and if in addition Ωo
k << 1 the

above relations simplify to

R⃗o ≈ R⃗k + Ω⃗o
k × R⃗k

to ≈ tk − β⃗ko · R⃗k

c

where

Ω⃗o
k =

β⃗ok × β⃗ko
(βok)

2

5.4 Apparent Thomas precession

By many authors [49, 50, 51, 52] Thomas precession is defined by the rate of change
of the Wigner rotation angle. The exact expression for this rate depends on the clock
rate in the coordinate system of the observer.

However, as has been shown in the previous sections within one coordinate sys-
tem it is impossible to measure the Wigner rotation angle nor its change in time.



31

To be able to determine this angle, there must be a direction in the ether which can
be used as a reference. Let this direction be a rod between two points B and C in
rest with respect to the ether. When an observer A moving with velocity cβ⃗k with
respect to the ether measures the locations R⃗k at a local time tk according to the
transformations (4.16) the location and time in the ether are

r⃗ =
τk
γk

(
R⃗k + γk

(
γk

1 + γk
(β⃗o · R⃗k) + ctk

)
β⃗k

)

t = τk

(
tk +

β⃗k · R⃗k

c

)
At local time tk0 the observer A experiences an acceleration so that it takes a very
small time interval ∆to to reach the velocity cβ⃗o with respect to the ether. His ve-
locity with respect to the ether changes from cβ⃗k to cβ⃗o, which is measured after the
acceleration as cβ⃗ko . Then he measures the locations again according to transforma-
tion (4.15), but now with cβ⃗o so that

R⃗o =
γo
τo

(
r⃗ + γo

(
γo

1 + γo
(β⃗o · r⃗)− ct

)
β⃗o

)

to =
γ2o
τo

(
t− β⃗o · r⃗

c

)
yielding exactly the same results as equation (5.5) in chapter 5.3

R⃗o =
γoτk
τoγk

ℜ
{
β⃗k × β⃗o

|β⃗k × β⃗o|
,∆Ωo

k, R⃗
k − γko β⃗

k
o · R⃗k

1 + γko
β⃗ko

}
+ ctoβ⃗ok

When β⃗ko is small, the angle ∆Ωo
k is small and using the results of appendix B this

can be approximated up to first order in βko by

R⃗o ≈ R⃗k +∆Ω⃗o
k × R⃗k + ctoβ⃗ok (5.6)

where

∆Ω⃗o
k =

β⃗ok × β⃗ko
βokβ

k
o

≈ γo
1 + γo

β⃗o × β⃗ok

Dividing both sides by ∆to yields

∆Ω⃗o
k

∆to
= − γo

1 + γo
β⃗o × a⃗ok (5.7)

where a⃗ok = β⃗ok/∆t
o is the acceleration of the observer as measured by the observer.

Note that this rotation of vector R⃗o with respect to vector R⃗k is a purely kinematic
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effect as it is only due to an acceleration of the observer, not influencing any part of
the rod. Note also that this rotation does not only depend on a⃗ok but also on β⃗o so
that it enables the detection of the rods coordinates. In many textbooks this formula
is quoted as the Thomas precession, because such a phenomenon was first studied
by Thomas [53, 54] and was used to explain the anomalous value of the magnetic
moment of the electron.



Chapter 6

Dynamic effects

Another question all together is ”What happens to the dimensions and clock rates
of objects when their velocity is changed?”. This question is part of dynamical
effects due to a change in the velocity of the object. One of those effects has already
been encountered in section 4.1. Another one of these effects is the contraction of
objects when their velocity changes, which has been proposed by Fitzgerald [13]
and Lorentz [14] to explain the null result of the Michelson-Morley experiment. A
third dynamical effect is the so-called Thomas precession, proposed by Thomas [53,
54] in 1926 to explain the reduced Zeeman splitting found in atomic spectra.

6.1 Time dilatation

If the experiments of section 5.1 are interpreted as proof for τ = γ, then the clocks
really needs to slow down when they are moving with respect to the ether. Bai-
ley [55] observed the lifetimes of particles in storage rings and confirmed the in-
creased lifetimes of these particles. Hafele and Keating [56, 57, 58] measured the
different readings between Cesium atom clocks in relative rest with respect to the
Earth and Cesium atom clocks transported around the Earth by means of planes
flying in eastward and westward directions. However, the clocks did not move in
inertial systems hence no final conclusions about reduction of clock tick rate in in-
ertial flight can be obtained from these experiments. However, they have shown that
the periods of Cesium atom clocks do vary with their velocity with respect to the
ether and that such measurements are in practice possible with sufficient accuracy.

Let us assume two Cesium atom clocks, the first one stationary with respect to
the surface of the Earth, the second one moving over a great circle around the Earth
(see figure 6.1). The Earth axis is denoted as n⃗oe and the direction of the normal
to the great circle is n⃗o12. The velocity of clock 1 and clock 2 with respect to the
observer is denoted as cβ⃗o1 respectively cβ⃗o2 . The location of clock 1 with respect to

33
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Great circle axis, n⃗o12

n⃗oe, Earth axis

β⃗o2
β⃗o1

O

θo12

Figure 6.1: Two Cesium atom clocks moving over a great circle around the Earth.
One stationary with respect to the surface of the rotating Earth, the other moving
with respect to this surface.

the observer is given by

R⃗o
1(t

o) = ℜ
{
n⃗oe, ω

o
e(t

o − to0), R⃗
o
1(t

o
0)
}

where ωo
e is the rotation frequency of the Earth, to0 is the time the second clock starts

moving with respect to the first clock’s initial position R⃗o
1(t

o
0). The velocity of clock

1 with respect to the observer can be found by differentiating with respect to to

β⃗o1(t
o) =

1

c

dR⃗o
1(t

o)

dto

Clock 2 has a fixed velocity with respect to clock 1 and the surface of the Earth
and rotates around axis n⃗o12. If the Earth would be stationary with respect to the
observer, its location with respect to the observer’s coordinate system can be found
by

R⃗∗
2(t

o) = ℜ
{
n⃗o12, θ

o
12, R⃗

o
1(t

o
0)
}
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where θo12 is the angle between the positions of clock 1 and 2 as seen by the observer
(see figure 6.1). When ωo

12 is the rotation frequency of clock 2 with respect to clock
1 as seen by the observer in the center of the Earth, then θo12 = ωo

12(t
o − to0). After

a complete revolution around the great circle during time interval ∆T o the second
clock returns to the position of the first, so that ωo

12 = 2π/∆T o. However as the
Earth rotates around it’s axis, the observer finds the clock at location

R⃗o
2(t

o) = ℜ
{
n⃗oe, ω

o
e(t

o − to0), R⃗
∗
2(t

o
0)
}

The velocity of clock 2 with respect to the observer can be found by differentiat-
ing with respect to to

β⃗o2(t
o) =

1

c

dR⃗o
2(t

o)

dto

Using equation (5.1), under the condition that τ = γ, the observed period of the
Cesium atom clock 1 is given by T o

1 = Tγo1 and the total number of periods for
clock 1 is given by

N1 =

∫ to=to0+∆T o

to=to0

1

T o
1

dto =
1

T

∫ to=to0+∆T o

to=to0

(γo1)
−1dto

and a similar relation for clock 2. The observer time difference between clock 2 and
clock 1 is

∆to2,1 = T (N2 −N1) =

∫ to=to0+∆T o

to=to0

{
(γo2)

−1 − (γo1)
−1
}
dto

Because βo1 << 1 and βo2 << 1 this can be approximated as

∆to2,1 ≈
1

2

∫ to=to0+∆T o

to=to0

{
(βo1)

2 − (βo2)
2
}
dto

When the initial location of clock 1 is fixed by its longitude ϕo1 and latitude λo1
and clock 2 should move along a great circle (the center of the circle is the center
of the Earth), then when the latitude of n⃗o12 is chosen as λo12, its longitude is fixed
according to cos(ϕo1 − ϕo12) = − tanλo1 tanλ

o
12, as R⃗o

1(t
o
0) ⊥ n⃗o12. In such a case

the time difference can be calculated as

∆to2,1
∆T o(Ro

1/c)
2
≈
{(

(ωo
e)

2 + (ωo
12)

2
) (

cos−2 λo1 − cos2 λo1

)
− (ωo

e)
2
}(sinλo12

2

)2

+

−ωo
eω

o
12 cos

2 λo1 sinλ
o
12 +

(ωo
e)

2 cos(2λo1)

4
− (ωo

12)
2

2

For a great circle around the equator (i.e. λo1 = 0 and λo12 = ±π/2) this reduces
to

∆to2,1
∆T o

≈ −βo12
(
±βoe +

βo12
2

)
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where βo12 = ωo
12R

o
1/c, the velocity of clock 1 relative to the surface of the Earth

and βoe = ωo
eR

o
1/c, the velocity of the Earth surface with respect to the observer at

the center of the Earth. The time difference is identical to the one derived by Hafele
and Keating [56, 57] when the gravitational effect is ignored. Note that the time
difference is not the same when clock 2 moves with the rotation of the Earth instead
of against it. Hafele and Keating had to involve the general theory or relativity to
obtain the same results, while here they are obtained by assuming the existence of
the ether.

For a great circle around the poles (i.e. λo12 = 0) this reduces to

∆to2,1
∆T o

≈ (βoe)
2 cos(2λo1)− 2(βo12)

2

4

In this case the time difference depends on the latitude of clock 1 and varies between
−((βoe)

2 +2(βo12)
2)/4 for λo1 = ±π/2 and ((βoe)

2 − 2(βo12)
2)/4 for λo1 = 0. Hence

when starting at the equator the magnitude of the time difference is smallest. This
is due to the fact that the velocity of the clock fixed to the surface of the Earth is
largest at the equator.

6.2 Lorentz contraction

Lorentz [25] explained that contraction would occur due to the electro-magnetic
nature of the forces between the molecules or atoms of the rods. Hence, the rod
only contracts due to the dynamical rearrangement of its molecules or atoms due
to the change in electro-magnetic forces induced by the changed velocity of the
rod with respect to the ether. This gives us another clue how to measure Lorentz
contraction.

For instance, take two neutral objects with the same mass at some fixed distance
from each other and stationary in the ether. Accelerate them by means of two iden-
tical but independent rockets into the same direction, with the same acceleration
until the same end velocity is reached. As there are no forces between the objects
and they undergo the same acceleration, the distance between the objects remains
perfectly the same as before. However, when they measure their distance after the
acceleration they will measure a different one, because their measurement system is
Lorentz contracted.

Detailed analysis of such a possible experiment shows that there are three pos-
sibilities. Firstly, one can assume that the objects are accelerated at the same local
time. Secondly, one can assume that at the moment the first object accelerates it also
sends a signal using ether disturbances (i.e. the velocity of the signal is c) to the sec-
ond object. The second object will accelerate at the moment it receives the signal.
Thirdly, one can assume that the signal sent by the first observer propagates with
infinite velocity in the ether, hence the acceleration of both objects occurs an the
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same ether time. The first two possibilities are in concord with Lorentz ether theory
or special relativity theory. The third possibility requires an infinite signal speed,
prohibited by special relativity theory but (maybe) possible in quantum mechanics.

So, let us assume observers B and C moving with velocity cβ⃗k through the ether
at locations R⃗k

B,< and R⃗k
C,< with respect to the origin of their co-moving coordinate

system. The subscripts < denote values before the acceleration. They have synchro-
nized their clocks with respect to the origin so that they have the same local time.
Let observer B accelerate (in a very short time) at local time tkB,0 to ether velocity
cβ⃗o. Observer C will accelerate in exactly the same way at local time tkC,0. After
the accelerations the observers will be stationary again with respect to each other as
they moved with the same initial velocity.

An observer A already moves with velocity cβ⃗o with respect to the ether. His
observation of the locations of B and C before they have accelerated can be found
from the results in chapters 5.2 and 5.3 as summarized in equation (5.5)

R⃗o
B,< =

γoτk
τoγk

ℜ
{
β⃗k × β⃗o

|β⃗k × β⃗o|
,Ωo

k, R⃗
k
B,< − γko β⃗

k
o · R⃗k

B,<

1 + γko
β⃗ko

}
+ ctoβ⃗ok (6.1)

and similar for C, so that before the acceleration, the distance between B and C as
measured by observer A is given by

Lo
< =

γoτk
τoγk

√
(Lk

<)
2 −

(
L⃗k
< · β⃗ko

)2
where L⃗k

< = R⃗k
C,< − R⃗k

B,< and L⃗o
< = R⃗o

C,< − R⃗o
B,<.

Before the acceleration, the location and time of observer B in the ether can be
found by applying the inverse transformation (4.16)

r⃗B,< =
τk
γk

R⃗k
B,< + γk

γkβ⃗k · R⃗k
B,<

1 + γk
+ ctk

 β⃗k


tB,< = τk

tk + β⃗k · R⃗k
B,<

c


At the moment of the acceleration (denoted by subscripts 0) the local or observer

B time tk = tkB,0 and the location of observer B in the ether is

r⃗B,0 =
τk
γk

R⃗k
B,< + γk

γkβ⃗k · R⃗k
B,<

1 + γk
+ ctkB,0

 β⃗k


This is also the location of observerB directly after the acceleration, as it is assumed
to be very large. His ether time is

tB,0 = τk

tkB,0 +
β⃗k · R⃗k

B,<

c
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which depends on its position R⃗k
B,<. Hence, the ether times that observers B and C

start their accelerations differ by

tC,0 − tB,0 = τk
(
tkC,0 − tkB,0 + β⃗k · (R⃗k

C,< − R⃗k
B,<)/c

)
(6.2)

After the acceleration the velocity with respect to the ether is cβ⃗o and hence the
location of observer B with respect to the ether is

r⃗B,> = r⃗B,0 + cβ⃗o(t− tB,0)

And the locations and times as observed by observer A co-moving with observers
B and C after the acceleration can be found by applying transformation (4.15) with
the velocity cβ⃗o yielding

R⃗o
B,> =

γo
τo

(
r⃗B,> + γo

(
γoβ⃗o · r⃗B,>

1 + γo
− ct

)
β⃗o

)

to =
γ2o
τo

(
t− β⃗o · r⃗B,>

c

)
(6.3)

So that, by inserting the above equations

t = τot
o − (γ2o − 1)tB,0 + γ2o

β⃗o · r⃗B,0

c

and

R⃗o
B,> =

γo
τo

(
r⃗B,0 +

γ2o β⃗o · r⃗B,0

1 + γo
β⃗o − γoctB,0β⃗o

)

yielding by using β⃗ok and β⃗ko
R⃗o

B,> =
γoτk
τoγk

× (6.4)γokctkB,0β⃗
o
k + R⃗k

B,< −
(γok)

2β⃗ko · R⃗k
B,<

γok − 1
β⃗ok −

(β⃗ko − β⃗ok) · R⃗k
B,<

(1 + cosΩo
k)(β

o
k)

2
(β⃗ko − β⃗ok)


where Ωo

k is the Wigner rotation angle as defined by equation (5.4). This equation
can be interpreted as a boost with cβ⃗ko by applying transformation (4.15)

R⃗o
B,> =

γok
τ ok

(
R⃗k

B,< + γok

(
γok

1 + γok
(β⃗ko · R⃗k

B,<)− ctk
)
β⃗ko

)

toB,0 =
(γok)

2

τ ok

tkB,0 −
β⃗ko · R⃗k

B,<

c
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at tk = tkB,0, followed by a rotation over Wigner rotation angle Ωo
k around an axis

(β⃗ok × β⃗ko )/|β⃗ok × β⃗ko | at the location of origin of the observer, giving almost same
result (see also appendix B). The difference is that the factor γoτk

τoγk
is replaced by γo

k
τo
k

.
This yields the same result when τ = γ.

Directly after the acceleration the local time measured by observer A of the ac-
celeration moment of B is given by equation (6.3)

toB,0 =
τkγo
γkτo

γok

tkB,0 −
R⃗k

B,< · β⃗ko
c


and a similar relation for C so that the time difference between C and B is

∆to = toC,0 − toB,0 =
τkγo
γkτo

γok

(
tkC,0 − tkB,0 −

L⃗k
< · β⃗ko
c

)
(6.5)

where L⃗k
< = R⃗k

C,< − R⃗k
B,< so that in general the clocks of observers B and C are

not synchronized anymore after the acceleration. Note that

L⃗k
< · β⃗ko = −γkτo

τkγo
γokL⃗

o
< · β⃗ok

where L⃗o
> = R⃗o

C,> − R⃗o
B,>, so that the time difference between the acceleration of

C and B as observed by A can also be written as

∆to =
τkγo
γkτo

γok

(
tkC,0 − tkB,0

)
+ (γok)

2 L⃗
o
< · β⃗ok
c

(6.6)

By using equation (6.4), after the acceleration the difference between locations B
and C as measured by observer A is given by

L⃗o
> =

γoτk
τoγk

×

{
γokc(t

k
C,0 − tkB,0)β⃗

o
k + L⃗k

< − (γok)
2β⃗ko · L⃗k

<

γok − 1
β⃗ok −

(β⃗ko − β⃗ok) · L⃗k
<

(1 + cosΩo
k)(β

o
k)

2
(β⃗ko − β⃗ok)

}
which can be rewritten as

L⃗o
> = L⃗o

< + c∆toβ⃗ok

Hence, observer A will notice that the acceleration of B and C is not simultane-
ously and will notice that the distance between B and C changes. When ∆to > 0
corresponds to the distance moved by C after B has accelerated or when ∆to < 0
corresponds to the distance moved by B after C has accelerated. Below the details
of the three possibilities as discussed above are given.
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6.2.1 Equal local time

If it is assumed that the objects are accelerated at the same local time, we will have
tkB,0 = tkC,0 and hence according to equation (6.6)

∆to = (γok)
2 L⃗

o
< · β⃗ok
c

When L⃗o
< ⊥ β⃗ok, there is no time difference and hence no change in Lo. When

L⃗o
>//β⃗

o
k then the distance Lo

> is equal to

Lo
> = (γok)

2Lo
<

which differs form the apparent Lorentz contraction by a factor of γok. Unfortu-
nately it is very difficult to perform such an experiment, so that this difference is
not observed yet. Both this time difference and distance can be measured and gives
information about β⃗ok, but is not directly dependent on the velocity with respect to
the ether.

The question arises what happens when, like in the previous chapter, the points
B and C are ridged connected to a rod. Can this rod change its velocity at every
location at the same local time? When a force is applied at one point of the rod,
dynamical action will prevent a direct start of the complete rod, especially if one
assumes that no signal can travel faster than ether disturbances. Hence, when this
time difference is measured it gives information about the dynamical aspects of the
matter the rod is constructed of.

6.2.2 Ether signal synchronization

Let us assume that at the moment object B accelerates (tk = tkB,0) a signal is send
to object C using ether disturbances (i.e. the velocity of the signal is c). This signal
will reach object C at the local time

tkC,0 = tkB,0 +
Lk
<

c

because as it was shown in chapter 4.7, according to the observers B and C, ether
disturbances seem to move with velocity c also when they are moving with respect
to the ether. Hence according to equation (6.6)

∆to =
τkγo
γkτo

γokL
k
<

c
+ (γok)

2 L⃗
o
< · β⃗ok
c

which can be rewritten as

∆to =
τkγo
γkτo

γok

(
Lk
< − L⃗k

< · β⃗ko
c

)
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corresponding to the time difference it takes for the ether disturbance to travel the
distance between objects B and C as observed by observer A. Note that ∆to > 0
so that also according to observer A, the second object will always accelerate after
the first object. In observer’s A coordinates this becomes

∆to = γok

√
(Lo

<)
2 +

(
γokL⃗

o
< · β⃗ok

)2
+ γokL⃗

o
< · β⃗ok

c

When L⃗o
< ⊥ β⃗ok, the time difference is equal to ∆to = γok

Lo
<

c , so that it seems that
the time interval is dilated. When L⃗o

>//± β⃗ok then the time difference is equal to

∆to =
Lo
<

c∓ cβok

so that
Lo
> = Lo

<

(
1 + (γok)

2βok(1± βok)
)

Again both time difference and distance can be measured and gives information
about β⃗ok, but does not directly depend on the velocity with respect to the ether.

6.2.3 Infinite speed signal synchronization

If it is assumed that the signal sent by the first observer propagates with infinite
velocity in the ether, then the acceleration of both objects occurs at the same ether
time. In that case the time difference is given by equation (6.2)

tkC,0 − tkB,0 = − β⃗k · L⃗
k
<

c

so that by using equation (6.5)

∆to = −τkγo
γkτo

γok
L⃗k
< ·
(
β⃗k + β⃗ko

)
c

Here it is clear that the velocity β⃗k enters into the time difference. So, that in
principle it should be detectable by such a measurement. If βko << 1 then

∆to ≈ − L⃗
o
< · β⃗k
c

so that the change in distance becomes

L⃗o
> ≈ L⃗o

< −
(
L⃗o
< · β⃗k

)
β⃗ok ≈ L⃗o

< +
(
L⃗o
< · β⃗o

)
β⃗ok

Hence, the distance between the points C and B changes due to the acceleration
proportional to first order in βok and βk or βo, enabling the detection of the velocity
of the ether with respect to observer A, β⃗o, by changing the orientation of L⃗o

< with
respect to it.
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6.3 Thomas precession

Lets have an electron moving with velocity cβ⃗ok with respect to an observer A. The
observer moves with velocity cβ⃗o with respect to the ether. The electron moves
with cβ⃗k with respect to the ether. Let us assume that the magnetic moment of
the electron is initially directed in a direction S⃗k in the electrons rest system. The
direction in the ether co-ordinate system can be found by applying inverse transfor-
mation (4.16)

S⃗ =
τk
γk

(
S⃗k − γkβ⃗k · S⃗k

1 + γk
β⃗k

)

and the direction in observer’s A co-ordinate system by equation (5.5)

S⃗o
k =

γoτk
τoγk

ℜ
{
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |
,Ωo

k, S⃗
k − γko β⃗

k
o · S⃗k

1 + γko
β⃗ko

}

which can be rewritten as

S⃗o
k +

(γko )
2β⃗ok · S⃗o

k

1 + γko
β⃗ok =

γoτk
τoγk

ℜ
{
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |
,Ωo

k, S⃗
k

}
(6.7)

and reversed

S⃗k =
γkτo
τkγo

ℜ
{
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |
,−Ωo

k, S⃗
o
k +

(γko )
2β⃗ok · S⃗o

k

1 + γko
β⃗ok

}

Then at a certain instance, the electron’s velocity with respect to the ether changes
to cβ⃗m, and hence with respect to the observer the velocity becomes cβ⃗om. The
question arises what happens to the direction of the magnetic moment when the
velocity of the electron changes? Of coarse this depends on how the velocity change
is imparted. Two special cases are the assumptions that the direction in the ether
does not change or that the direction in the electron’s rest system does not change.

6.3.1 Stationary direction in ether

In case the direction of the magnetic moment of the electron does not change in the
ether, the direction with respect to the observer does not change either as the velocity
of the observer with respect to the ether is constant. Hence, in such a case only the
interaction of the magnetic moment with the self-field of the electron is changed.
In quantum mechanics this self-field is ignored and hence, no change in interaction
occurs and hence this can not explain the anomalous value of the magnetic moment
of the electron in quantum mechanics.
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6.3.2 Stationary direction in electron’s rest system

In case the direction of the magnetic moment of the electron does not change in its
rest system, both the direction of the magnetic moment with respect to the ether as
the one observed by observer A changes, as the velocity of the electron with respect
to the ether changes. Now again, the direction in the ether co-ordinate system can
be found by applying inverse transformation (4.16) and the direction in observer’s
A co-ordinate system by equation (5.5)

S⃗o
m =

γoτm
τoγm

ℜ
{
β⃗om × β⃗mo

|β⃗om × β⃗mo |
,Ωo

m, S⃗
m − γmo β⃗

m
o · S⃗m

1 + γmo
β⃗mo

}
and reversed

S⃗m =
γmτo
τmγo

ℜ
{
β⃗om × β⃗mo

|β⃗om × β⃗mo |
,−Ωo

m, S⃗
o
m +

(γmo )2β⃗om · S⃗o
m

1 + γmo
β⃗om

}
As it is assumed that the magnetic moment of the electron does not change direc-

tion in the electron’s rest system S⃗m = S⃗k and hence by using equation (6.7) S⃗o
m

can be expressed in S⃗o
k, according to

γmτk
τmγk

ℜ
{
β⃗om × β⃗mo

|β⃗om × β⃗mo |
,−Ωo

m, S⃗
o
m +

(γmo )2β⃗om · S⃗o
m

1 + γmo
β⃗om

}
=

ℜ
{
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |
,−Ωo

k, S⃗
o
k +

(γko )
2β⃗ok · S⃗o

k

1 + γko
β⃗ok

}
If we assume that the electrons velocity with respect to the observer is in all cases
much smaller than c the second terms in the rotation function arguments can be
neglected and the above reduces to

γmτk
τmγk

ℜ
{
β⃗om × β⃗mo

|β⃗om × β⃗mo |
,−Ωo

m, S⃗
o
m

}
= ℜ

{
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |
,−Ωo

k, S⃗
o
k

}

Further, when both Ωo
k << 1 and Ωo

m << 1, then γmτk
τmγk

≈ 1 and using the results
of appendix B

S⃗o
m = S⃗o

k +
S⃗o
k ×

(
β⃗ok × β⃗ko

)
(βok)

2
−
S⃗o
m ×

(
β⃗om × β⃗mo

)
(βom)2

Note that both sides of this equation contain S⃗o
m. However, by inserting this equa-

tion in itself the last term disappears, as the cross product of two parallel vectors is
0, yielding

S⃗o
m = S⃗o

k + S⃗o
k ×

(
β⃗ok × β⃗ko
(βok)

2
− β⃗om × β⃗mo

(βom)2

)
−

{
S⃗o
k ×

(
β⃗ok × β⃗ko

)}
×
(
β⃗om × β⃗mo

)
(βok)

2(βom)2
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or expressed in the coordinate system of the observer

S⃗o
m = S⃗o

k+S⃗
o
k×
{(
αo
mβ⃗

o
m − αo

kβ⃗
o
k

)
× β⃗o

}
−αo

kα
o
m

{
S⃗o
k ×

(
β⃗ok × β⃗o

)}
×
(
β⃗om × β⃗o

)
where

αo
k =

γoγ
o
k(1 + γo + γk + γok)

(1 + γo)(1 + γk)(1 + γok)

and a similar expression for αo
m.

If βok << 1, βom << 1, then αo
k = αo

m = γo/(1 + γo) and hence

S⃗o
m = S⃗o

k +∆Ω⃗o
m,k × S⃗o

k

where
∆Ω⃗o

m,k = − γo
1 + γo

β⃗o ×
(
β⃗om − β⃗ok

)
Dividing both sides by ∆to yields

∆Ω⃗o
m,k

∆to
= − γo

1 + γo
β⃗o × a⃗ok,m (6.8)

where a⃗ok,m =
(
β⃗om − β⃗ok

)
/∆to is the acceleration of the electron as measured by

the observer. Note that this rotation of vector S⃗o
m with respect to vector S⃗o

k depends
on the velocity of the observer and hence (in the used approximation) of the electron
with respect to the ether. The only approximations used are that βok << 1 and
βom << 1, so that this equation is still valid even if both observer and electron move
through the ether with a velocity close to the speed of light.

6.3.3 Discussion

The result (6.8) is completely analogue to equation (5.7), although here the electron
changes its velocity instead of the observer. The difference is that here the observer’s
velocity with respect to the ether does not change, hence he is actual able to measure
the rotated vector. In the case leading to equation (5.7) the whole coordinate system
of the observer is rotated and hence he was not able to detect the rotated vector
directly. It was only possible to detect the rotated vector if a reference vector in the
ether coordinate system was assumed to remain fixed and hence the observer was
able to measure the rotation of his coordinate system with respect to this reference
vector.

Under the same conditions (i.e. the magnetic moment of the electron does not
change in its rest system and small velocities) according to special relativity theory
there is a Wigner rotation due to the difference between β⃗ok and β⃗om. The axis of this
rotation is perpendicular to β⃗ok and β⃗om [49, 59] given by

∆Ω⃗o
m,k

∆to
= − (γok)

2

1 + γok
β⃗ok × a⃗ok,m
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This equation is different from the one in equation (6.8) by the factor in front of
the cross product. In case of velocities small with respect to c, this difference is
very small. However, in the cross product instead of the velocity of the observer
(or electron) with respect to the ether, the velocity of the electron with respect to
the observer enters. In this way it should be possible to discriminate between the
theories leading to these equations.

According to many authors the Thomas precession is the cause of the anamolous
electron g-factor. If the above equation is correct it might be that very high precision
measuermetns of the electron g-factor could also reveal annual variations during the
earth’s orbit around the sun [27].

One should keep in mind that the derivation critically depends on the reaction of
the electron moment on the velocity change of the electron. The electron can only
change its velocity be means of forces applied to it. In case of electro-magnetic
forces one has to be careful how these forces are created as electro-magnetic forces
are also subject to Lorentz transformations. It might be that a torque free force in
one coordinate system results in a torque on the electron in its rest system, thereby
not only changing the velocity of the electron, but also the direction of the magnetic
moment in the electron’s rest system. This also has been stressed by Kholmet-
skii [60, 61].
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Chapter 7

Possible experiments

7.1 Classification of experiments

Simply one can divide the experiments to determine the absolute motion of the
reference frame (or in other terms ’of the ether’) into two categories: first order or
second order experiments, where the observed effect should be proportional to the
appropriate order of the ratio of the velocity of the laboratory frame relative to the
speed of light.

Bradley aberration [62] and the cosmic microwave background signal [63] are
the most famous ones of the first category. The observation of a dipole distribution
in the cosmic microwave background radiation [63] is an important experiment.
By special relativity theory it is interpreted as the remnants of the initiation of the
universe. For others it is a clear indication of a preferred reference frame and for
some it has triggered renewed interest in the old ether concept. If it is interpreted as
the frame in which the ether is at rest, another conclusions must be drawn from the
observation of the dipole: A first order effect is possible. This is in direct contrast
to the popular believes of the 20th century.

The Michelson-Morley experiment [3] is the most famous one for the second cat-
egory. Because of the large speed of light and the smallness of velocity of the lab-
oratory, in the 19th and first half of the 20th century, measurements were restricted
to interference techniques (polarization measurement can also be interpreted as an
interference technique). The attention changed from first order experiments to sec-
ond order experiments when at the end of the 19th century the Fizeau drag effect
was used to explain why first order experiments were not able to detect the absolute
velocity of the earth. Nowadays, a further distinction into two other categories can
be made: interference measurements and non-interference experiments.

In table 7.1 the categories with some examples are shown. Some of these ex-
periments have been performed, but never repeated. Others are proposals based on
theoretical analysis. The listing is typical, but incomplete. In the following, first
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the history of the second order interference experiment is discussed. This type of
experiment is not a perfect candidate for a possible experiment to find deviations
from special relativity theory because of the smallness of the effect: they are second
order effects and the deviations are very small.

First order interference experiments as proposed by Múnera [64], Spavieri [65]
and Wesley [66] and performed by Silvertooth [67, 68] and De Haan [69] are there-
fore better candidates. It is argued that time-of-flight measurements might do a bet-
ter job as claimed via experiments by Marinov [70] and De Witte [71] and proposed
by Kozynchenko [72] and Sardin [73] and in progress by Ahmed [74].

Experiment Proposal

Interference
First order

Silvertooth (Standing waves)
Galaev (Dynamic)
De Haan (Gas-filled)

Wesley (Adapted Sagnac)
Spavieri (Material-filled)
Múnera (Gas-filled)
Christov (Correlator)

Interference
Second order

Michelson-Morley
Demjanov (Material-filled)
Múnera (Stationary)
Cahill (Optical fiber)
De Haan (Optical fiber)

Consoli (Gas-filled)

Non-Interfer.
First order

Bradley aberration
Cosmic Microwave Backgr.
Marinov (Coupled shutters)
De Witte (Time difference)

Ahmed (Coupled shutters)
Kozynchenko (Time diff.)

Non-Interfer.
Second order

Sardin (Time difference)
Phipps, Jr. (Bradley aber.)

Table 7.1: Categories and possible experiments to test special relativity theory

The question arises under which conditions an ether theory and special relativity
theory might give different results compared to the Lorentz ether theory. A possible
answer has already been given by Helmholtz in 1858 [75] and was based on a remark
by Euler in a publication of 1757 [76]. This was made to draw attention to limita-
tions of velocity potentials to describe fluid motion. Triggered by this, Helmholtz
showed that some type of fluid motion can not be generated or destroyed by con-
servative forces. He related this kind of fluid motion to vortex motion. Santilli [77]
discovered a similar shortcoming in the modern use of Lagrangian and Hamiltonian
dynamics, where standard all non-conservative forces are neglected. Santilli [77]
describes two conditions under which these neglects are not detrimental. The first
one is the closure condition: The system can be considered as isolated from the
rest of the universe in order to permit the conservation laws of the total mechanical
energy, the total physical linear momentum, the total physical angular momentum,
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and the uniform motion of the center of mass. The second one is the selfadjoint-
ness condition: The particles can be well approximated as massive points moving in
vacuum along stable orbits without collisions, in order to restrict all possible forces
to those of action-at-a-distance, potential type. Hence, the search for experiments
to invalidate special relativity theory should be based on considerations whether or
not these experiments violate these conditions. Todays examples of such experi-
ments are (among many others) the superluminal tunneling experiments [78] and
the rotational Mössbauer experiments [46].

7.2 Second order interference experiments

In chapter 1 the history of the most famous second order interference experiment,
the Michelson-Morley experiment has been discussed. All experimentalist authors
report the absence of the sought for effect. However, according to Múnera [79, 80]
these experiments all have results comparable with those of Miller. Hence, ex-
perimental evidence is not conclusive whether or not some first or second order
effect exists. Recently, it has been argued by Cahill [81] and Consoli [82] that the
Miller effect [12], together with all other Michelson-Morley interferometer experi-
mental results [17, 18, 19, 20, 21], could be due to a reduction of ether drag. This
drag would depend on the difference of the refractive index of 1, which for atmo-
spheric air is approximately 3 × 10−4, for atmospheric helium 4 × 10−5 and for
vacuum 0. This would also explain why modern-day vacuum experiments all give
much lower limits for the anisotropy. Experiments performed by Demjanov [83]
and Galaev [84] seem to confirm these predictions, but they have never been re-
peated. Cahill [85] used a fiber optic interferometer and claimed a positive result.
This experiment was repeated by De Haan [86] under (almost) the same conditions
yielding a result compatible with special relativity theory. The idea that the drag
would depend on the medium (or is time-dependent as assumed by Galaev) can also
be explained by a violation of one of the Santilli’s conditions mentioned earlier.

New interests in the theory and experiment of the interferometric method to de-
termine the anisotropy (or its absence) of the speed of light at the Earth surface
emerged at the end of the last century. Múnera [79] discovered systematic errors
in the data reduction of the measurements. He showed that the interpretation of the
amplitude and phase of the second order effect should be done for each rotation
of the interferometer separately, not by averaging on forehand. Further, following
Hicks [87, 88] and Righi [89, 90, 91] De Miranda Filho describes possible first order
effects in a Michelson-Morley interferometer [92]. Recently Múnera [80] reported
an experiment claiming to see second order effects. He used a Michelson-Morley
interferometer being stationary in the laboratory frame. The rotation of the Earth
was used to change the direction of the velocity of the apparatus with respect to the
preferred frame. This idea was followed by Cahill [85] using a fiber optical version



50 Chapter 7. Possible experiments

of the interferometer. In these experiments the influence of the temperature on the
signal was acknowledged. Múnera corrects his data for it and Cahill claims that
the temperature can not influence the signal significantly. De Haan [86] copied the
set-up of Cahill, with a stabilized temperature. He found a second order signal, but
no sidereal dependence.

The Michelson-Morley experiment [5, 6] and its successors show that a moving
rod changes its length according to the Lorentz transformations. Otherwise it would
be possible to observe a shift in the interference pattern upon rotation of the instru-
ment. This is a real dynamical effect in the arms of the interferometer, occurring
completely unnoticed because the length measurements are distorted in the same
way.

In 1968 Demjanov [93] repeated the Michelson-Morley experiment and discov-
ered that the effect dependents on the material used as optical path. In vacuum the
effect is absent and in air it is reduced by a factor of about 40. He also derived
the same conclusion from the Fresnel drag coefficient formula and taking into ac-
count Lorentz contraction. Unfortunately, by that time, special relativity theory had
reached dogma status and his findings are being ignored by mainstream physics until
this day [83]. By now, the claim of a reduced sensitivity is followed by Spavieri [65],
Consoli [82] and Cahill [81].

In view of the history of the experiment described above and the new insight of its
reduced sensitivity it is of paramount importance that the Michelson-Morley exper-
iment is repeated. This modern day repetition should copy as close as possible its
original form under temperature controlled conditions with a fully-automated data
acquisition. The knowledge of systematic errors in the data reduction of previous
experiments must be used for the data reduction procedure.

7.3 First order interference experiments

Due to the smallness of second order effects many have devised experiments that
should give a first order effect. Successful candidates are experiments which incor-
porate a violation of Santilli’s conditions. This could be due the interaction of light
with matter as discussed in the previous section.

According to Múnera [64] and Spavieri [65] the second order effects mentioned
could be transformed into a first order effect by using an a-symmetric Mach-Zehnder
interferometer. One arm of the interferometer contains over a path length L a ma-
terial with refractive index n1 and the other arm over the same length a material
with refractive index n2. Spavieri calculates a change in traveling time difference
in the two arms upon rotation of the setup of ∆t = 2vL(n21−n22)/c

2 where v is the
velocity of the ether wind, c the speed of light. He then argues that this will yield a
fringe shift proportional to first order and would result in an easy obtained detection
limit for v of some meters per second. A fiber optical version of this experiment
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was performed by De Haan [69]. In one arm a glass tube was inserted with a length
of 100 mm that could be filled with atmospheric air or helium. When the glass
tube was filled with air, upon rotation a fringe shift was observed corresponding to
a maximum velocity of 64(6) km/s, about twice the velocity of Earth in its orbit
around the Sun. However, the azimuth of the maximum of the first order effect was
in the North to South direction and did not depend on sidereal time. When the air
was replaced by helium this shift remained almost the same, casting doubts on the
validity of Consoli’s assumption of the reduction of ether drag. Another possible
explanation would be that the ether velocity is dependent by the height above the
surface of the Earth. This effect is mentioned by Miller [12] as a possible expla-
nation for his reduced effect. Galaev [84] introduces such an effect to explain his
measurements results with an asymmetric Mach-Zehnder interferometer. Such an
effect could also depend on the medium surrounding the experiment, for it is not
known to what extension the ponderable matter might influence the ether velocity.
For definite conclusions these experiment need to be repeated with higher accuracy
and at several altitudes.

Wesley [66] describes an interesting possibility that (as far as the author is aware)
has never been performed. He uses a Mach-Zehnder type of interferometer and
analyzes the resulting intensities of independent beams passing in opposite direc-
tions through the interferometer in a frame that is both rotating and translating.
The novelty is in the comparison of intensities produced by counter propagating
waves at two different locations. There might be a connection to the experiment
performed by Silvertooth [67, 68]. He used a very thin transparent photo detec-
tor [94] to detect the nodes of the standing wave created by two counter propagat-
ing waves in a Sagnac type of interferometer. Silvertooth claimed a positive result
but the theoretical background of the experiment was never explained satisfacto-
rily [95, 96, 97, 98, 99, 100]. The experiment was repeated by Marinov twice. First
with a similar result [101] and later after adaptation of the experiment with a nega-
tive result [102]. The adaptation was the replacement of the standing wave detector
by a transparent mirror, changing the interference from counter propagating waves
into interference of waves traveling into the same direction. This indicates that
the use of counter propagating waves is crucial. The connection between Wesley’s
proposal and Silvertooth experiment can be made by the Wang’s description of a
Generalized Sagnac effect [103] as due to any moving part of the experiment. In
Silvertooth experiment, the rotation of the earth would be used to create the rota-
tional motion additional to the translation of the solar system. The possible accuracy
of Silvertooth experiment makes it a very attractive option to reproduce.
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7.4 Second order non-interference experiments

Interference techniques are regarded as the most accurate ones for the detection of
the preferred frame. However, standard interference techniques use interference be-
tween light waves traveling in the same direction to obtain intensity fluctuations
or fringes due to travel distance differences and not due to travel time differences.
If the wave character of light is taken into account, light reflected from a moving
mirror obtains in general a different frequency. If the Doppler effect is taken into
account, this complicates the calculations. Further complications arise due to the
aberration effect. Under these conditions it might be considered that Lorentz con-
traction and/or time dilatation does not occur in reality. Based on this reasoning,
Sardin [73] proposed to measure the actual time difference of the travel time of
the light beams through the two arms of a Michelson-Morley interferometer. With
current state-of-the-art pulsed lasers and an interferometer as large as LIGO with
multiple reflections yielding an effective arm length of 120 km the expected time
difference is some nanoseconds. It was considered not feasible by LIGO staff [104].

7.5 First order non-interference experiments

In 1728 Bradley [62] discovered that some stars exhibited an aberration depending
on the velocity of the earth around the sun. This is now known as Bradley aberration.
Its explanation in the framework of special relativity theory is disputed in literature
(see for instance [105]), especially since De Sitter [106] showed that binary stars
(moving with a different velocity at approximately the same location in the sky)
have the same aberration independent of the velocity of the stars. The discrepancy
can be mended up to first order if the wave character of light is taken into account.
Phipps [107] proposes that higher order terms might be observable by Very Long
Base Line interferometry.

In the 1970-80’s Marinov [108, 70] performed several first order experiments
which (he claimed) gave positive and similar results. They were all based on a
so-called Newtonian time synchronization. The idea that a Newtonian time syn-
chronization can be obtained is strengthened by the well-known clock paradox or
twin paradox. It has been and still is discussed by many authors. It is closely related
to the question whether time dilatation is a dynamical process or not. According to
special relativity theory the observer’s time scale is changed when he moves with
respect to a clock. According to compatible ether theories the time scale is fixed
(Newtonian) and the clock set in motion changes its rate. Based on the idea that
Newtonian time synchronization is achieved, Kozynchenko [72] proposes to look
for a sidereal period in the time-of-flight measurements of laser pulses between two
distant locations on the Earth surface.

The Newtonian time synchronization as realized by Marinov is based on shut-
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ters or mirrors mounted on two rotating discs connected by a rigid axis. Ives [109]
showed that such a system, subjected to Lorentz contraction, cannot be used as a
Newtonian time synchronization. However, Lorentz contraction is based on conser-
vative forces and it could be that contact forces in the axis and discs (violating the
second Santilli condition) would enable a Newtonian time synchronization. Again
to the author knowledge Marinov’s experiments have not been repeated until now,
but an attempt is in progress [74].

In 1991 De Witte [71] performed a first order experiment by measuring a phase
delay of a 5 MHz electro-magnetic signal through a 1.5 km long cable. The novelty
of this experiment was that he did not use an interference technique to determine
the time delay, but he directly measured the phase of the waves. He measured for
178 days and claimed to have observe a sidereal dependence on the occurrence of
the maximum time delay. The experiment was never repeated in this way. Based on
this experiment Cahill claimed to measure a similar effect [110], but it is based on
very limited data.

Christov [111] uses this idea of phase comparison in a novel way. Instead of mea-
suring the local intensity of interfering counter propagating light beams he proposes
to measure the correlation between the electro-magnetic fields at different locations.
The correlation between the electro-magnetic fields should exhibit a clear first order
effect, varying with the distance between the locations. The maximum effect occurs
if the ratio between the wavelength of the used light and the distance between the
locations is equal to the ration of the expected velocity and the speed of light, i.e.
1/1000. For visible light the frequency is too high to be able to measure the tempo-
ral characteristics of the electro-magnetic field. For lower frequencies down to radio
waves this is possible. However, the associated wavelengths are much larger, which
results in distances of the order of several meters to hundreds of meters to obtain
accurate enough results. With the use of Terahertz waves (sub mm) the dimensions
could be kept below 1 m. Another approach to measure the correlation between
two distant locations, could be to use superluminal tunneling [78, 112, 113] or other
non-propagating transfer mechanisms, like for instance a standing wave crossing an
absorber [114].

7.6 New experiments

It has been shown that a growing number of experimentalists are considering the
possibility of detecting deviations from special relativity theory.

To be able to experimentally test a theory a good understanding of its range of
applicability is needed. An alternative theory that does not deviate in its experimen-
tal predictions can only be preferred or rejected by its meta-philosophical content.
An alternative extended theory is needed to be able to device experiments to dis-
criminate between them. The Lorentz ether theory extends special relativity theory
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(although it predates it too) as it uses absolute velocities, i.e. velocities relative to
the frame in which the ether is at rest. However, as long as this extension is not
experimentally verified is has no practical use and can be disregarded.

Another extension has been realized by Santilli by incorporating contact forces
or extended particles and non-locality. Contact forces can give rise to superluminal
velocities which, when incorporated in a suitable experiment, should be able to
expose the velocity of the ether. That is why in the above the considered experiments
were focused on the detection of the ether rest frame.

The above list is far from complete and only addresses certain experiments in
which a possible violation of Santilli’s conditions for the validity of special rela-
tivity theory is considered. Some experimentalists claim to have observed such a
deviation. Unfortunately the reproduction of most of these experiments is either not
documented or not performed. This omission clearly hinders scientific progress.
On the one hand, if the reported deviations are experimentally confirmed, special
relativity theory should have been replaced by a more extended theory. On the other
hand, if they were experimentally dismissed, efforts could have been spent into other
scientific endeavors.

The most important experiments that needs to be reproduced are the first order
experiments because of the expected magnitude of the effect. The interference mea-
surements with counter propagating beams and a standing wave detector as per-
formed by Silvertooth should be reproduced. The adapted Sagnac experiment as
proposed by Wesley could be related to this experiment, however it does not use a
standing wave detector so it is technically not too complicated. The novel experi-
ment as proposed by Christov is interesting, not only to detect the ether rest frame,
but also in studies where relative velocities are considered or when superluminal
velocities are involved.

A proposal for the repetition of the Demjanov experiment has been made by de
Haan [115].

As we have seen in the previous chapters that if it exist, the ether is masked due
to clock rate and length changes due to the velocity with respect to this ether. This
is based on the effect that ether disturbances move with a maximum velocity. If
there is a means that a signal is transported faster than the speed of light, then also
is will be possible to detect ones motion through the ether as these signals can be
used to synchronize clocks. This is the basis for the proposal of Rembielinski [116]
to perform an Einstein-Podolsky-Rosen-type experiment with a pair of observers
staying in the same inertial frame and with use of elementary particles to find a
preferred (or ether) frame. Some authors [117, 118, 119, 120, 121] propose that the
existence of fast light really means that ether disturbances move faster than light
through the ether, if it exists such phenomena can be used to detect the ether frame.
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Conclusions

It is impossible to detect a difference between an observer at rest or an observer
in motion with respect to the ether when the period of all sources depend on their
velocity with respect to the ether as indicated by equation (4.1) and the assumption
that τ = γ. Einstein’s basic axiom that all physical laws should be the same regard-
less of the observer’s velocity [15] gives this result directly. This can be interpreted
as due to ignorance of ones own velocity with respect to the ether.

If this should also be the case in general, then this means that all objects should
contract according to the Lorentz transformation (4.17) and periodic events should
be time dilated according to equation (4.18). Lorentz [25] proved this for all electro-
magnetic phenomena for which the Maxwell equations hold and he proposed this
could be valid for all natural phenomena. He called this his theorem of correspond-
ing states.

Here, this is interpreted as the result of a measurement system distorted in such
a way that it is impossible to detect one’s velocity with respect to the ether as long
as the clocks and measurements rods are affected by this velocity in the way as
discussed above. This can be called measurement relativity, because it is due to the
distortions in the measurement equipment due to the velocity with respect to the
ether.

However, a growing number of experimentalists are considering the possibility
of detecting deviations from special relativity theory.

An alternative extended theory is needed to be able to device experiments to dis-
criminate between them. The Lorentz ether theory extends special relativity theory
(although it predates it too) as it uses absolute velocities, i.e. velocities relative to
the frame in which the ether is at rest.

Another extension has been realized by Santilli by incorporating contact forces
or extended particles and non-locality. Contact forces can give rise to superluminal
velocities which, when incorporated in a suitable experiment, should be able to
expose the velocity of the ether. A proposal based on this possibility is the repetition
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of the Demjanov experiment [115].
Some authors [117, 118, 119, 120, 121] propose that the existence of fast light

really means that ether disturbances move faster than light through the ether, if it
exists such phenomena can be used to detect the ether frame.

The experiment based on Thomas Precession at relatively small velocities as de-
scribed in chapter 6.3 should be able to give information about the reference system
in which the torque on the electron magnetic moment is 0 or negligible. This might
be the ether frame, although this is not in general the case. It is a first order experi-
ment, so it should be able to give reasonable accurate results.
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Appendix A. Useful relations

Variables without superscript denote quantities as measured in the ether. Variables
with a superscript o or k denote quantities as measured in a coordinate system as
defined in chapter 4.3 for an observer moving with a velocity cβ⃗o or cβ⃗k with respect
to the ether. In all cases γ = 1/

√
1− β2.

The velocity of coordinate system k as measured by an observer in coordinate
system o is given by the velocity addition formula (4.21) as derived in chapter 4.7

β⃗ok =
β⃗k/γo +

(
γo/(1 + γo)β⃗k · β⃗o − 1

)
β⃗o

1− β⃗k · β⃗o

which can be rewritten as

β⃗ok =
γk
γok
β⃗k −

γo(γk + γok)

γok(1 + γo)
β⃗o

where is was used that

β⃗k · β⃗o = 1− γok
γkγo

and a similar relation for

β⃗ko =
γo
γko
β⃗o −

γk(γo + γko )

γko (1 + γk)
β⃗k

A special case exists if one takes βk = 0, i.e. the velocity of the ether as measured
by an observer moving with respect to the ether with velocity cβ⃗o

β⃗o = −β⃗o

From this one can derived the useful relations

γko = γok

β⃗k =
γok
γk
β⃗ok +

γo(γk + γok)

γk(1 + γo)
β⃗o
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β⃗k = −
(1 + γk)

(
γokβ⃗

k
o + γoβ⃗o

)
γk(γo + γok)

β⃗k = −
γok(1 + γk)

(
(γk + γok)β⃗

k
o + (1 + γok)β⃗

o
k

)
γk(γ

o
k − 1)(1 + γo + γk + γok)

and

β⃗o =
γok
γo
β⃗ko +

γk(γo + γok)

γo(1 + γk)
β⃗k

β⃗o = −
(1 + γo)

(
γokβ⃗

o
k + γkβ⃗k

)
γo(γk + γok)

β⃗o = −
γok(1 + γo)

(
(1 + γk)β⃗ko + (γo + γok)β⃗

o
k

)
γo(γok − 1)(1 + γo + γk + γok)

so that
β⃗ok · β⃗o =

γk
γoγok

− 1

β⃗ko · β⃗o =
(γo + γok)

2

γoγok(1 + γk)
− 1 + γoγ

o
k

γoγok

β⃗ok · β⃗k =
(γk + γok)

2

γkγ
o
k(1 + γo)

− 1 + γkγ
o
k

γkγ
o
k

β⃗ko · β⃗k =
γo
γkγ

o
k

− 1

Also

β⃗o = −
γok(1 + γo)

(
(1 + γk)β⃗

k
o + (γo + γok)β⃗

o
k

)
γo(γok − 1)(1 + γo + γk + γok)

and

β⃗k = −
γok(1 + γk)

(
(γk + γok)β⃗

k
o + (1 + γo)β⃗

o
k

)
γk(γ

o
k − 1)(1 + γo + γk + γok)

The Wigner rotation angle is

cosΩo
k = − β⃗

k
o · β⃗ok
βkoβ

o
k

=
(1 + γo + γk + γok)

2

(1 + γo)(1 + γk)(1− γok)
− 1

which can be rewritten by using cos θ = β⃗k · β⃗o/(βkβo) as

cosΩo
k = 1− (γo − 1)(γk − 1) sin2 θ

1 + γoγk(1− βoβk cos θ)

and also

sinΩo
k = γoβoγkβk sin θ

(1 + γo + γk + γok)

(1 + γo)(1 + γk)(1 + γok)



Appendix B. Rodrigues vector
rotation formula

The function

ℜ(n⃗,Ω, R⃗) = R⃗+ n⃗× R⃗ sinΩ− (R⃗− n⃗(n⃗ · R⃗))(1− cosΩ)

is known as the Rodrigues vector rotation formula rotating the vector R⃗ around a
unit vector n⃗ over an angle Ω according to the right hand rule.

In case of Wigner rotation the vector n⃗ can be expressed by means of the veloci-
ties cβ⃗o and cβ⃗k where

n⃗ =
β⃗o × β⃗k

|β⃗o × β⃗k|
and the angle Ω can be expressed as

cosΩ =
1

(1 + γo)(1 + γk)

(
γo + γk

1 + γoγk(1− β⃗o · β⃗k)
+ 1

)2

− 1

or
sinΩ = sin θ

γoβoγkβk
(1 + γo)(1 + γk)

(
γo + γk

1 + γoγk(1− βoβk cos θ)
+ 1

)
where θ is the angle between β⃗o and β⃗k.

When the velocities cβ⃗ok and cβ⃗ko are used instead then

n⃗ =
β⃗ok × β⃗ko

|β⃗ok × β⃗ko |

and

cosΩ = − β⃗
o
k · β⃗ko
βokβ

k
o

so that β⃗o, β⃗k, β⃗ok and β⃗ko all lie in the same plane and the above rotation has the
effect that the vector β⃗ko is rotated into the vector −β⃗ok.
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Note that

sinΩ =
|β⃗ok × β⃗ko |
βokβ

k
o

so that

n⃗ =
β⃗ok × β⃗ko
βokβ

k
o sinΩ

Using these relations, the Wigner rotation can be rewritten as

ℜ(n⃗,Ω, R⃗) = R⃗ cosΩ + n⃗× R⃗ sinΩ + n⃗(n⃗ · R⃗)(1− cosΩ)

ℜ(β⃗ok, β⃗ko ,Ω, R⃗) =
(β⃗ok × β⃗ko )× R⃗− (β⃗ok · β⃗ko )R⃗

(βok)
2

+
(β⃗ok × β⃗ko )

(
(β⃗ok × β⃗ko ) · R⃗

)
(1 + cosΩ)(βok)

4

which can be rewritten as

ℜ(β⃗ok, β⃗ko ,Ω, R⃗) = R⃗− 2β⃗ok(R⃗ · β⃗ko )
(βok)

2
−

(β⃗ok − β⃗ko )
(
R⃗ · (β⃗ok − β⃗ko )

)
(βok)

2(1 + cosΩ)

If Ω << 1, Rodrigues vector rotation formula can be approximated by

ℜ(n⃗,Ω, R⃗) = R⃗+ Ω⃗× R⃗

where Ω⃗ = Ωn⃗, so that

ℜ(β⃗ok, β⃗ko , R⃗) = R⃗+

(
β⃗ok × β⃗ko

)
× R⃗

(βok)
2

or when both βo << 1 and βk << 1

ℜ(β⃗ok, β⃗ko , R⃗) = R⃗+
1

2

(
β⃗o × β⃗k

)
× R⃗



Summary

Based on the principle of Huygens that an ether disturbance moves away with a fi-
nite constant velocity in a spherical shell, it is possible to derive Lorentz-like trans-
formations that reduce to Lorentz transformations when it is assumed that the period
of the ether disturbance is dependent on its velocity with respect to the ether. A mov-
ing observer using these ether disturbances can create his coordinate system. This
reference system will be distorted in such a way that it is impossible to detect his ve-
locity with respect to the ether as long as the clocks are also affected by this velocity
in the same way as the period of the ether disturbances. This can be called measure-
ment relativity, because it is due to the distortions in the measurement equipment
due to the velocity with respect to the ether.

Experiments that would be able to detect the ether must incorporate interaction
with matter as there are strong indications that Quantum Mechanics is not valid in
special relativity theory but can be in correspondence with the Lorentz ether the-
ory. The most important experiments that needs to be reproduced are first order
experiments because of the expected magnitude of the effect.
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angle of aberration, 10
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apparent Lorentz contraction, 28, 30, 40
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boost, 28, 29, 38

Cesium atom, 13
Cesium atom clock, 33
clock paradox, 14
clock synchronization, 19
coordinate system, 4, 7, 13, 15, 18–20,
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71

dispersion relation, 3
Doppler effect, 5, 6, 8, 9, 25
Doppler shift, 26

Einstein, 1, 16, 21, 55
Einstein-Podolsky-Rosen experiment, 54
ether disturbances, 7, 13, 15, 23, 25, 36,

40, 54, 56, 71
Euclidean space, 4, 15

first order experiment, 1, 47, 52–54
frequency, 3, 10, 52, 53
Fresnel, 1
Fresnel drag coefficient, 1, 50

Galilean transformation, 7
Galilean velocity composition law, 7
Green function, 3, 4

Huygens principle, 4

International System of Units, 13, 14

local time, 19, 22, 23, 36, 37, 40
Lorentz, 1, 19, 21, 33, 36
Lorentz contraction, 1, 36, 50, 52, 53
Lorentz ether theory, 2, 37, 48, 53, 55,

71
Lorentz transformation, 21, 26, 28, 45,

50, 55

Maxwell, 1
Maxwell equations, 3, 21, 55
Michelson, 1
Michelson-Morley experiment, 33, 47, 50
Michelson-Morley interferometer, 1, 2,

49, 52
Miller, 1, 2, 49, 51

period, 3, 4, 7, 13, 14, 20, 22, 25, 26, 35,
55, 71

phase, 2, 3, 49, 53
plane wave, 3, 6
point source, 4
Prandtl-Glauert transformation, 17
propagation direction, 5, 9

relative ray, 10
relativistic velocity addition law, 22
Rodrigues vector rotation formula, 29
rotation frequency, 34, 35

second order experiment, 1, 47
special relativity theory, 1, 2, 37, 44, 47–

50, 52–55, 71
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speed of light, 1, 14, 15, 44, 47, 49, 50,
53

Thomas precession, 30, 32, 33
transverse Doppler effect, 11

wave equation, 3
wave vector, 3
wave velocity, 3, 4, 6, 9, 10
wavefront, 4–10, 13–15, 19–21, 23, 25
wavelength, 3, 4, 19, 20, 53
Wigner rotation, 29, 44
Wigner rotation angle, 29, 30, 38, 39



.



.



.



Published June 2014 by

BonPhysics Research and Investigations B.V.

Laan van Heemstede 38

3297 AJ Puttershoek · The Netherlands.

BonPhysics was founded by Dr. ir. ing. Victor-O. de Haan in 1997.

He observed a growing need for small scale R & D activities.

Companies and government agencies unable to perform these activities

can be confronted with fundamental and/or technical problems.

BonPhysics is able to solve these problems for them.

more information on: www.bonphysics.nl


